Study of nanocarbon spontaneous emission centers on the cathodes of multiwire proportional chamber of the LHCb muon detector

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been established that because of long-term operations in experiments at the LHC, nanocarbon structures form on the cathodes of multiwire proportional chambers of the LHCb muon detector. The appearance of such structures is the cause of spontaneous self-sustained currents in the chambers. The current emission centers are growing due to the absorption of the gas mixture dissociation products on the copper cathode. The process occurs under normal conditions, which is unusual for nanostructures, and is not reproducible in laboratory aging tests.

About the authors

G. E. Gavrilov

Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute"

Email: gavrilov_gg@pnpi.nrcki.ru
Gatchina, Russia

M. E. Buzoverya

Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics

Sarov, Russia

A. Radulovic

Institute of General and Physical Chemistry

Belgrade, Serbia

A. Yu. Arkhipov

Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics

Sarov, Russia

A. A. Dzyuba

Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute"

Gatchina, Russia

I. A. Karpov

Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics

Sarov, Russia

O. E. Maev

Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute"

Gatchina, Russia

D. Bajuk-Bogdanovic

University of Belgrade, Faculty of Physical Chemistry

Belgrade, Serbia

H. Begovic

Institute of General and Physical Chemistry

Belgrade, Serbia

References

  1. LHCb Сollaboration // JINST. 2008. V. 3. Art. No. S08005.
  2. CMS collaboration // Nucl. Instrum. Meth. Phys. Res. A. 2002. V. 494. P. 504.
  3. Ferguson T., Gavrilov G., Korytov A. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2002. V. 488. P. 240.
  4. Acosta D., Adelman J., Affolder T. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2003. V. 515. P. 226.
  5. Agosteo S., Alteri S., Belli G. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2000. V. 452. P. 94.
  6. Suvorov V., Schneider T., Schmidt B. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2003. V. 515. P. 220.
  7. Gavrilov G.E., Maev O.E., Maysuzenko D.A., Nasybulin S.A. // Phys. Atom. Nucl. 2019. V. 82. No. 9. P. 1273.
  8. Albicocco F.P., Anderlini L., Maev O. et al. // JINST. 2019. V. 14. Art. No. 11031.
  9. Malter L. // Phys. Rev. 1936. V. 50. P. 8.
  10. Va’vra J. // Nucl. Instrum. Meth. Phys. Res. A. 2003. V. 515. P. 1.
  11. Hurley R.E. // J. Physics D. 1979. V. 10. P. L195.
  12. Capeans M. // Nucl. Instrum. Meth. Phys. Res. A 2003. V. 515. P. 73.
  13. Алешин А.Н., Белорус А.О., Врублевский И.А., Спивак Ю.М. и др. Наночастицы, наносистемы и их применение. Сенсорика, энергетика, диагностика СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2020. 280 с.
  14. Vyatkin A.F. // Tech. Phys. Lett. 2019. V. 45. No. 2. P. 170.
  15. Fursey G.N., Polyakov M.A., Bagraev N.T. et al. // J. Surf. Invest. Xray. Synchrotron Neutron Tech. 2019. V. 13. No. 5. P. 814.
  16. Бузоверя М.Э., Гаврилов Г.Е., Маев О.Е. // ЖТФ. 2021. Т. 91. № 2. С. 365.
  17. Buzoverya M.E., Gavrilov G.E., Maev O.E. // Tech. Phys. 2021. V. 66. No. 2. P. 356.
  18. Buzoverya M.E., Zavyalov N.V., Karpov I.A. et al. // Phys. Atom. Nucl. 2019. V. 82. No. 9. P. 329.
  19. Gavrilov G.E., Buzoverya M.E., Karpov I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. Р. 956.
  20. Arkhipov A.A., Buzoverya M.E., Karpov I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1737.
  21. Gavrilov G.E., Buzoverya M.E., Arkhipov A.A. et al. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 8. P. 1271.
  22. Lanfranchi G. // Nucl. Instrum. Meth. Phys. Res. A. 2004. V. 535. P. 221.
  23. Blinov V.E., Prisekin V.G. // Instrum. Exp. Tech. 2012. V. 55. No. 4. P. 429.
  24. Choudhary S., Sarma J.V.N., Pande S. et al. // AIP Advances. 2018. Art. No. 055114.
  25. Krel S.I., Arkhipov A.V., Gabdullin P.G. et al. // Fuller. Nanotub. Carbon Nanostruct. 2012. V. 20. No. 4–7. P. 468.
  26. Иванов А.И., Небогатикова Н.А. и др. // ФТП. 2017. Т. 51. № 10. С. 1357.
  27. Григорьев Ф.И. Плазмохимическое и ионнохимическое травление в технологии микроэлектроники. Москва: МИЭМ, 2003. С. 14.
  28. Anzai K., Kato H., Hoshino M. et al. // Eur. Phys. J. D. 2012. V. 66. Art. No. 36.
  29. Itikawa Y. // J. Phys. Chem. Ref. Data. 2002. V.31. No. 3. P. 749.
  30. Edelson D., Flamm D. // J. Appl. Phys. 1984. V. 56. No. 5. P. 1522.
  31. Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. Art. No. 187401.
  32. Kostogrud I.A., Trusov K.V., Smovzh D.V. // Adv. Mater. Interfaces. 2016. V. 3. No. 8. Art. No. 1500823.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).