Two-dimensional plasma excitations in a split-ring resonator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We analyzed the electromagnetic properties of a split-ring resonator based on a two-dimensional electronic system (2DES). Analysis of the absorption of electromagnetic radiation by the 2DES in the geometry of a split-ring resonator revealed new plasma modes associated with a split in the structure. This plasmon resonance manifests itself under conditions of excitation by both alternating electric and alternating magnetic fields, which opens the possibility of developing a highly efficient tunable phase shifting element.

About the authors

A. S Kazakov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: kazakov@issp.ac.ru
Chernogolovka, Russia

P. A Gusikhin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

I. V Andreev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

V. M Muravev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

I. V Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

References

  1. Kadic M., Milton G.W., van Hecke M. et al. // Nature Rev. Phys. 2019. V. 1. P.198.
  2. Kildishev A.V., Shalaev V.M. // Phys. Usp. 2011. V. 54. No. 1. P. 53.
  3. Zheludev N., Kivshar Y. // Nature Mater. 2012. V. 11. P. 917.
  4. Valipour A., Kargozarfard M.H., Rakhshi M. et al. // Proc. Inst. Mech. Eng. L. 2022. V. 236. No. 11. P. 2171.
  5. Holloway C.L., Kuester E.F., Gordon J.A. et al. // IEEE Antennas Propag. Mag. 2012. V. 54. No. 2. P. 10.
  6. Veselago V.G. // Sov. Phys. Usp. 1967. V. 92. No. 7. P. 517.
  7. Smith D.R., Pendry J.B., Wiltshire M.C.K. // Science. 2004. V. 305. No. 5685. P. 788.
  8. Shalaev V.M. // Nature Photon. 2007. V. 1. No. 1. P. 41.
  9. Pendry J.B. // Phys. Rev. Lett. 2000. V. 85. No. 18. P. 3966.
  10. Yuan G., Rogers K.S., Rogers E.T. et al. // Phys. Rev. Appl. 2019. V. 11. No. 6. Art. No. 064016.
  11. Pendry J.B., Schurig D., Smith D.R. // Science. 2006. No. 312. P. 1780.
  12. Cai W., Chettiar U.K., Kildishev A.V. et al. // Nature Photon. 2007. V. 1. No. 4. P. 224.
  13. Guo Y., Guo Y., Li C. et al. // Appl. Sciences. 2021. V. 11. No. 9. P. 4017.
  14. Xu C., Ren Z., Wei J. et al. // iScience. 2022. V. 25. No. 2. Art. No. 103799.
  15. Bahteev I.S., Molchanov S.Y., Muravev V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 400.
  16. Molchanov S.Y., Bahteev I.S., Muravev V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 408.
  17. Brovko A.M., Dzhikirba K.R., Muravev V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 150.
  18. Yu N., Genevet P., Kats M.A. et al. // Science. 2011. V. 334. No. 6054. P. 333.
  19. Pfeiffer C., Grbic A. // Phys. Rev. Lett. 2013. V. 110. No. 19. Art. No. 197401.
  20. Decker M., Staude I., Falkner M. et al. // Adv. Opt. Mater. 2015. V. 3. No. 6. P. 813.
  21. Chen M., Kim M., Wong A.M. et al. // Nanophotonics. 2018. V. 7. No. 6. P. 1207.
  22. Remnev M.A., Klimov V.V. // Phys. Usp. 2018. V. 61. No. 2. P. 157.
  23. Kerker M., Wang D.S., Giles C.L. // JOSA. 1983. V. 73. No. 6. P. 765.
  24. Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J. // IEEE Trans. Microwave. Theory Tech. 1999. V. 47. No. 11. P. 2075.
  25. Padilla W.J. // Opt. Express. 2007. V. 15. P. 1639.
  26. Linden S., Enkrich C., Wegener M. et al. // Science. 2004. V. 306. No. 5700. P. 1351.
  27. Katsarakis N., Koschny T., Kafesaki M. et al. // Appl. Phys. Lett. 2004. V. 84. P. 2943.
  28. Hannam K.E., Powell D.A., Shadrivov I.V. et al. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 081111.
  29. Kapitanova P.V., Maslovski S.I., Shadrivov P.M. et al. // Appl. Phys. Lett. 2011. V. 99. No. 25. Art. No. 251914.
  30. Kodama C.H., Coutu R.A. // Appl. Phys. Lett. 2016. V. 108. No. 23. Art. No. 231901.
  31. Burke P.J., Spielman I.B., Eisenstein J.P. et al. // Appl. Phys. Lett. 2000. V. 76. No. 6. P. 745.
  32. Yoon H., Yeung K., Kim P. et al. // Philos. Trans. Royal Soc. A. 2014. V. 372. Art. No. 20130104.
  33. Padilla W.J., Taylor A.J., Highstrete C. et al. // Phys. Rev. Lett. 2006. V. 96. No. 10. Art. No. 107401.
  34. Aydin K., Bulu I., Guven K. et al. // New J. Phys. 2005. V. 7. No. 1. P. 168.
  35. Smith D.R., Padilla W.J., Vier D.C. et al. // Phys. Rev. Lett. 2000. V. 84. No. 18. P. 4184.
  36. Gubarev S.I., Koval’ski V.A., Kulakovski D.V. et al. // JETP Lett. 2004. V. 80. No. 2. P. 124.
  37. Kovalskii V.A., Gubarev S.I., Kukushkin I.V. et al. // Phys. Rev. B. 2006. V. 73. No. 19. Art. No. 195302.
  38. Rechberger W., Hohenau A., Leitner A. et al. // Opt. Сommun. 2003. V. 220. No. 1-3. P. 137.
  39. Zarezin A.M., Gusikhin P.A., Andreev I.V. et al. // JETP Lett. 2021. V. 113. P. 713.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).