OPERATIONAL RANGE, LIMITATIONS AND EXPECTED SIGNAL-TO-NOISE RATIO FOR THE DIAGNOSTIC “REFLECTOMETRY FOR ELECTRON DENSITY PROFILE MEASUREMENTS” FOR T-15MD TOKAMAK

封面

如何引用文章

全文:

详细

The operational limits and measurement range are assessed for the diagnostics “Reflectometry for measuring the electron density profile” developed for the T-15MD device. The recent changes in the diagnostics design are considered, the parameters of the diagnostics components are given, the expected signal-to-noise ratio is estimated. In conclusion, an assessment of the maximum level of density fluctuations at which the diagnostics retains its operability is given and compared with the results of measurements at other facilities. The work is of interest to specialists involved in the development of microwave diagnostics for thermonuclear facilities.

作者简介

D. Shelukhin

National Research Center “Kurchatov Institute”

Email: Shelukin_DA@nrcki.ru
Moscow, Russian Federation

V. Vershkov

National Research Center “Kurchatov Institute”; International Fusion Projects—Coordinating Centre

Moscow, Russian Federation; Moscow, Russian Federation

V. Lukyanov

National Research Center “Kurchatov Institute”; International Fusion Projects—Coordinating Centre

Moscow, Russian Federation; Moscow, Russian Federation

D. Molchanov

National Research Center “Kurchatov Institute”; International Fusion Projects—Coordinating Centre

Moscow, Russian Federation; Moscow, Russian Federation

N. Solovev

National Research Center “Kurchatov Institute”

Moscow, Russian Federation

I. Vladimirov

National Research Center “Kurchatov Institute”; International Fusion Projects—Coordinating Centre; Moscow Institute of Physics and Technology (State University)

Moscow, Russian Federation; Moscow, Russian Federation; Moscow, Russian Federation

A. Loginov

National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology (State University)

Moscow, Russian Federation; Moscow, Russian Federation

参考

  1. Велихов Е.П., Ковальчук М.В., Анашкин И.О., Андреев В.Ф., Асадулин Г.М., Ахметов Э.Р., Балашов А.Ю., Бегишев Р.А., Белов А.М., Бельбас И.С. и др. // ВАНТ. Сер. Термоядерный синтез. 2024. Т. 47.№2. С. 5. https://doi.org/10.21517/0202-3822-2024-47-2-5-14
  2. Велихов Е.П., Ковальчук М.В., Анашкин И.О., Асадулин Г.М., Баркалов Е.Е., Баркалов К.Е., Белов А.М., Борщеговский А.А., Будаев В.П., Вершков В.А. и др. //ВАНТ. Сер. Термоядерный синтез, 2024. Т. 47. Вып 4. С. 9.
  3. Шелухин Д.А., Субботин Г.Ф., Вершков В.А., Владимиров И.А. // Физика плазмы. 2022. Т. 48. С. 721.
  4. Simonet F. // Rev. Sci. Instrum. 1985. V. 56. P. 664. https://doi.org/10.1063/1.1138200
  5. Silva A., Manso M.E., Cupido L., Albrecht M., Serra F., Varela P., Santos J., Vergamota S., Eus´ebio F., Fernandes J., Grossmann T., Kallenbach A., Kurzan B., Loureiro C., Meneses L., Nunes I., Silva F., Suttrop W. and the ASDEX Upgrade Team // Rev. Sci. Instrum. 1996. V. 67. P. 4138.
  6. Zeng L., Wang G., Doyle E.J., Rhodes T.L., Peebles W.A., Peng Q. // Nuclear Fusion. 2006. V. 46. P. S677. https://doi.org/10.1088/0029-5515/46/9/S03
  7. Meneses L., Cupido L., Sirinelli A., Manso M.E. and JET EFDA contributors // Rev. Sci. Instrum. 2008. V. 79. P. 10F108. https://doi.org/10.1063/1.2972134
  8. Shelukhin D.A., Vershkov V.A., Subbotin G.F., Sarychev D.V., Petrov A.A., Petrov V.G., Sokolov M.M., Igonkina G.B. // Rev. Sci. Instrum. 2018. V. 89. P. 094708. https://doi.org/10.1063/1.5039151
  9. Clairet F., Bottereau C., Chareau J.M., Sabot R. // Rev. Sci. Instrum. 2003. V. 74. P.1481. https://doi.org/10.1063/1.1530359
  10. Вершков В.А., Солдатов С.В., Шелухин Д.А., Уразбаев А.О. // Приборы и техника эксперимента. 2004. №. 2. С. 54.
  11. Шелухин Д.А., Субботин Г.Ф., Вершков В.А., Владимиров И.А. // Физика плазмы. 2022. T. 48. С. 747.
  12. Heald M.A., Wharton C.B. Plasma diagnostics with microwaves. New York-London-Sydney: John Wiley & Sons Inc., 1998.
  13. Mazzucato E. // Phys. Fluids. 1992. V. B4. P.3460. https://doi.org/10.1063/1.860354
  14. Azizov E.A., Belyakov V.A., Filatov O.G., Velikhov E.P. and T-15MD Team // 24rd IAEA Fusion Energy Conf. (FEC2010). Daejon, Korea Rep., 11–16 October 2010. FTP/P6-01.
  15. Bottolier-Curtet H., Ichtchenko G. // Rev. Sci. Instrum. 1987. V.58. P. 539.
  16. ГОСТ 20900-2014. Трубы волноводные медные и латунные прямоугольные. Технические условия: нац. Стандарт Российской Федерации. Дата введения 2015-09-01.
  17. Katsenelenbaum B.Z., Mercader Del Rio L., Pereyaslavets M., Sorolla Ayza M., Thumm M. Theory of non-uniform waveguides, the cross-section method (Electromagnetic Waves Series), 1998.
  18. Doane J.L. // Microwave Theory Techniques. 1984. V. 32. P. 1362. https://doi.org/ 10.1109/TMTT.1984.1132848
  19. Novokshenov A., Nemov A., Shelukhin D., Lukyanov V., Gorbunov A., Vershkov V. // Fusion Engineering Design. 2022. V. 168. P. 112506. https://doi.org/10.1016/j.fusengdes.2122.112506
  20. IEEE, IEEE Std 521-2019 (Revision of IEEE Std 521-2002), "IEEE Standard Letter Designations for Radar-Frequency Bands". Feb. 2020. P. I. https://doi.org/10.1109/IEEESTD.2020.8999849
  21. Широкополосный отключаемый малошумящий усилитель ECSLNA100326. 3 ГГц –26 ГГц. Технические параметры. ELVIRA, 2024.
  22. AT-BB-0020-4529. 300MHz-20GHz Broadband Amplifier. Datasheet. AT Microwave, 2023.
  23. ZVA-213-S+. Wideband Amplifier 800 MHz to 21 GHz. Datasheet. Mini Circuits, 2022.
  24. AT-AM2-1830-28L. Active X2, 18-30 GHz High Power Frequency Doubler. Datasheet. AT Microwave, 2023.
  25. Frequency Doublers, Standard X2 Series. Datasheet. Wright technologies, 2023.
  26. AT-AM2-2244-28L. Active X2, 22–44 GHz Frequency Doubler. Datasheet. AT Microwave, 2023.
  27. AT-AM4-3666-18. Full U Band x4 Active Multiplier 36–66 GHz. Datasheet. AT Microwave, 2023.
  28. Frequency Multiplier Quadruplers ASX65-418. Datasheet. Wright Technologies, 2023.
  29. Mazzucato E., Nazikian R. // Rev. Sci. Instrum. 1995. V. 66. P. 1237.
  30. Shelukhin D.A., Vershkov V.A., Gorbunov A.V., Lukyanov V.V., Petrov V.G., Sarychev D.V., Soloviev N.A., Subbotin G.F. // Proceed. 15th Internat. Reflectometry Workshop (IRW15), ITER Headquarters, St Paul Lez Durance, France. 07–10 June 2022.
  31. ГОСТ859-2014. Медь. Марки: нац. Стандарт Российской Федерации. Дата введения 2015-07-01.
  32. ROHACELL®HF. Technical Information // Evonik Resource Efficiency GmbH. 2017.
  33. Liao S.Y. Microwave Devices & Circuits (3rd ed.). Prentice Hall Inc., 1990.
  34. Белоусов В.И., Вершков В.А., Денисов Г.Г., Хозин М.А., Шелухин Д.A. // Письма ЖТФ. 2017. Т. 43. С. 83.
  35. SM0226LC1MDQ 2 To 26 GHz SingleSideband Upconverter. Datasheet. Narda-Miteq, 2024. https://nardamiteq.com/docs/MITEQSM0226LC1MD.PDF.
  36. Балансные смесители. Технические параметры. MVM Lab, 2023.
  37. Double & Triple Balanced Mixer. Datasheet. Meuro, 2024.
  38. Double Balanced Mixer DM0520LW1. Datasheet. Narda-MITEQ, 2023.
  39. Broadband Downconverters (Mixers). Datasheet. Spacek Labs, 2023.
  40. Broadband Balanced Mixers. Datasheet. ELVA-1, 2023.
  41. AT-MIX-4060. 40-60GHz Balance Mixer WR-19. Datasheet. AT Microwave, 2023.
  42. Шелухин Д.А., Солдатов С.В., Вершков В.А., Уразбаев А.О. // Физика плазмы. 2006. Т. 32. С. 771.
  43. Vershkov V.A., Eliseev L.G., Grashin S.A., Melnikov A.V., Shelukhin D.A., Soldatov S.V., Urazbaev A.O. and T-10 team // Nuclear Fusion. 2005. V. 45. P. S203.
  44. Kislov D. A. for the T-10 Team // Nuclear fusion. 2007. V. 47. P. S590.
  45. Gerbaud T., Clairet F., Sabot R., Sirinelli A., Heuraux S., Leclert G., Vermare L. // Rev. Sci. Instrum. 2006. V. 77. P. 10E928.
  46. Sabot R., Clairet F., Conway G.D., Cupido L., Garbet X., Falchetto G., Gerbaud T., Hacquin S., Hennequin P., Heurauxet S. et al. // Plasma Phys. Controlled Fusion. 2006. V. 48. P. B421.
  47. Synakowski E.J., Beer M.A., Bell R.E., Burrell K.H., Carreras B.A., Diamond P.H., Doyle E.J., Ernst D., Fonck R.J., Gohil P. et al. // Nuclear Fusion. 1999. V. 39. P. 1733.
  48. Vershkov V.A., Andreev V.F., Borschegovskiy A.A., Chistyakov V.V., Dremin M.M., Eliseev L.G., Gorbunov E.P., Grashin S.A., Khmara A.V., Kislovet A.Ya. et al. // Nuclear Fusion. 2011. V. 51. P. 094019.
  49. Вершков В.А., Шелухин Д.А., Субботин Г.Ф., Булдаков М.А., Петров В.Г., Петров А.А., Алтухов А.Б., Гурченко А.Д., Гусаков Е.З., Ирзаки М.А. // Физика плазмы. 2021. Т. 47. С. 579.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».