Measurement of methane and carbon dioxide fluxes from soils and plants under the mixed forest canopy in the south of Western Siberia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

作者简介

L. Ivanov

Tyumen State University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russia 625003 Tyumen, Volodarskogo Str., 6; Russia 620130 Yekaterinburg, 8 Marta Str., 202a

L. Ivanova

Tyumen State University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russia 625003 Tyumen, Volodarskogo Str., 6; Russia 620130 Yekaterinburg, 8 Marta Str., 202a

D. Ronzhina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russia 620130 Yekaterinburg, 8 Marta Str., 202a

S. Migalina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russia 620130 Yekaterinburg, 8 Marta Str., 202a

P. Yudina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russia 620130 Yekaterinburg, 8 Marta Str., 202a

I. Kuzmin

Tyumen State University

Email: leonidiv72@mail.ru
Russia 625003 Tyumen, Volodarskogo Str., 6

A. Khapugin

Tyumen State University

编辑信件的主要联系方式.
Email: leonidiv72@mail.ru
Russia 625003 Tyumen, Volodarskogo Str., 6

参考

  1. Dalal R.C., Allen D.E.Greenhouse gas fluxes from natural ecosystems // Aust. J. Bot. 2008. V. 56. № 5. P. 369–407.
  2. Blais A.-M., Lorrain S., Tremblay A.Greenhouse gas fluxes (CO2, CH4and N2O) in forests and wetlands of boreal, temperate and tropical regions // Greenhouse Gas Emissions–Fluxes and Processes / Eds. Tremblay A., Varfalvy L., Roehm S. and Garneau M. Berlin/Heidelberg: Springer-Verlag, 2005. P. 87–127.
  3. Barba J., Brewer P.E., Pangala S.R., Machacova K.Methane emissions from tree stems – current knowledge and challenges: an introduction to a Virtual Issue // New Phytol. 2024. V. 241.№4. P. 1377–1380.
  4. Keppler F., Hamilton J.T.G., Braß M., Röckmann T.Methane emissions from terrestrial plants under aerobic conditions // Nature. 2006. V. 439. № 7073. P. 187–191.
  5. Carmichael M.J., Bernhardt E.S., Bräuer S.L., Smith W.K.The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget? // Biogeochemistry. 2014. V. 119. P. 1–24.
  6. Nisbet R.E.R., Fisher R., Nimmo R.H.et al.Emission of methane from plants // Proc. R. Soc. B Biol. Sci. 2009. V. 276. № 1660. P. 1347–1354.
  7. Zeikus J.G., Ward J.C.Methaneformation in living trees: a microbial origin // Science.1974. V. 184. № 4142.P. 1181–1183.
  8. Мухин В.А., Воронин П.Ю.Выделение метана из древесины живых деревьев // Физ. раст.2011.Т. 58. № 2.С. 283–289.
  9. Covey K.R., Megonigal J.P.Methane production and emissions in trees and forests // New Phytol. 2019. V. 222. № 1. P. 35–51.
  10. Jeffrey L.C., Maher D.T., Tait D.R., Johnston S.G. A small nimble in situ fine-scale flux method for measuring tree stem greenhouse gas emissions and processes (S.N.I.F.F) // Ecosystems. 2020. V. 23. № 8. P. 1676–1689.
  11. Fest B., Hinko-Najera N., von Fischer J.C.et al. Soil methane uptake increases under continuous throughfall reduction in a temperate evergreen, broadleaved eucalypt forest // Ecosystems. 2017. V. 20. № 2. P. 368–379.
  12. Feng H., Guo J., Peng C.et al. Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink // Geoderma. 2023. V. 429. Art.116239.
  13. Machacova K., Bäck J., Vanhatalo A.et al.Pinus sylvestrisas a missing source of nitrous oxide and methane in boreal forest // Sci. Rep. 2016. V. 6. Art. 23410.
  14. СабрековА.Ф.,ГлаголевМ.В.,ФастовецИ.А. идр.Связь потребления метана с дыханием почв и травяно-мохового яруса в лесных экосистемах южной тайги Западной Сибири // Почвоведение.2015.Т. 2015. № 8. C. 963–973.
  15. Pitz S.L., Megonigal J.P., Chang C.H., Szlavecz K.Methane fluxes from tree stems and soils along a habitat gradient // Biogeochemistry. 2018. V. 137. № 3. P. 307–320.
  16. Ivanova L.A., Zolotareva N. V., Ronzhina D.A.et al.Leaf functional traits of abundant species predict productivity in three temperate herbaceous communities along an environmental gradient // Flora.2018.V. 239.P. 11–19.
  17. Семенов В.М., Кравченко И.К., Кузнецова Т.В. и др.Сезонная динамика окисления атмосферного метана в серых лесных почвах // Микробиология.2004.Т. 73. № 3. C. 423–429.
  18. Wang Y., Chen H., Zhu Q.et al.Soil methane uptake by grasslands and forests in China // Soil Biol. Biochem. 2014. V. 74. P. 70–81.
  19. Peichl M., Arain M.A., Ullah S., Moore T.R.Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests // Glob. Chang. Biol. 2010. V. 16. № 8. P. 2198–2212.
  20. Bowden R.D., Newkirk K.M., Rullo G.M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions // Soil Biol. Biochem. 1998. V. 30. № 12. P. 1591–1597.
  21. Wang Z.P., Han X.G., Wang G.G.et al.Aerobic methane emission from plants in the Inner Mongolia steppe // Environ. Sci. Technol. 2008. V. 42. № 1. P. 62–68.
  22. Guo X., Du Y., Li J.et al.Aerobic methane emission from plant: Comparative study of different communities and plant species of alpine meadow // Polish J. Ecol. 2015. V. 63. P. 223–232.
  23. Villa J.A., Ju Y., Stephen T.et al.Plant-mediated methane transport in emergent and floating-leaved species of a temperate freshwater mineral-soil wetland // Limnol. Oceanogr. 2020.V. 65. № 7.P. 1635–1650.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).