КЛИМАТИЧЕСКИЙ ОТКЛИК РАДИАЛЬНОГО ПРИРОСТА СОСНЫ ОБЫКНОВЕННОЙ И ЕЛИ СИБИРСКОЙ В СМЕШАННЫХ ЛЕСАХ РЕСПУБЛИКИ УДМУРТИЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе впервые проанализирован климатический сигнал в радиальном приросте сосны обыкновенной и ели сибирской, произрастающих на территории Республики Удмуртия. В отдельные годы в изученных хронологиях наблюдаются синхронные резкие изменения величины радиального прироста. Это касается как минимальных, так и максимальных значений. Оценка влияния среднемесячных температур воздуха и сумм осадков текущего и предшествующего года выявила различия в реакции радиального прироста сосны и ели на климат. Наибольшее влияние на величину радиального прироста ели оказывает прирост предыдущего года, а также гидротермические условия начала вегетационного периода. На радиальный прирост сосны в большей степени влияет температурный режим в весенние месяцы, предшествующие началу вегетации. Наблюдаемое изменение климата привело к ослаблению в последние десятилетия корреляции прироста обоих видов как с температурами, так и количеством осадков летних месяцев. Это свидетельствует о том, что условия стали более благоприятными для роста деревьев. Наоборот, корреляционная связь с условиями периода, предшествующего началу вегетации, возрастает. Таким образом, дальнейшее повышение зимних и весенних температур и количества осадков будет благоприятствовать радиальному росту обоих видов.

Об авторах

Н. М. Дэви

Институт экологии растений и животных УрО РАН

Email: voloduke@mail.ru
Екатеринбург, Россия

В. В. Кукарских

Институт экологии растений и животных УрО РАН; Удмуртский государственный университет

Email: voloduke@mail.ru
Екатеринбург, Россия; Ижевск, Россия

И. В. Ермолаев

Удмуртский государственный университет

Автор, ответственный за переписку.
Email: voloduke@mail.ru
Ижевск, Россия

Список литературы

  1. Gauthier S., Bernier P., Kuuluvainen T. et al. Boreal forest health and global change // Science. 2015. V. 349. № 6250. P. 819–822. https://doi.org/10.1126/science.aaa9092
  2. Global Forest Resources Assessment 2020. Rome: FAO, 2020. 184 p.
  3. Bradshaw C. J. A., Warkentin I. G., Sodhi N. S. Urgent preservation of boreal carbon stocks and biodiversity // Trends in Ecology & Evolution. 2009. V. 24. № 10. P. 541–548. https://doi.org/10.1016/j.tree.2009.03.019
  4. Pan Y., Birdsey R. A., Fang J. et al. A large and persistent carbon sink in the world’s forests // Science. 2011. V. 333. № 6045. P. 988–993. https://doi.org/10.1126/science.1201609
  5. Fritts H. Tree-rings and Climate. London: Academic Press, 1976. 567 p.
  6. Sheppard P. R. Dendroclimatology: Extracting climate from trees // WIREs Climate Change. 2010. V. 1. № 3. P. 343–352. https://doi.org/10.1002/wcc.42
  7. Zhang Z. Tree-rings, a key ecological indicator of environment and climate change // Ecological Indicators. 2015. V. 51. P. 107–116. https://doi.org/10.1016/j.ecolind.2014.07.042
  8. Camarero J. J., Linares J. C., García-Cervigón A. I. et al. Back to the future: The responses of Alpine treelines to climate warming are constrained by the current ecotone structure // Ecosystems. 2017. V. 20. № 4. P. 683–700. https://doi.org/10.1007/s10021-016-0046-3
  9. Devi N. M., Kukarskih V. V., Galimova A. A. et al. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains // Forest Ecosystems. 2020. V. 7. № 1. P. 2–16. https://doi.org/10.1186/s40663-020-0216-9
  10. Hantemirov R. M., Corona C., Guillet S. et al. Current Siberian heating is unprecedented during the past seven millennia // Nature Communications. 2022. V. 13. № 1. P. 1–8. https://doi.org/10.1038/s41467-022-32629-x
  11. Holtmeier F. K., Broll G. Treeline advance – driving processes and adverse factors // Landscape Online. 2007. V. 1. № 1. P. 1–32. https://doi.org/10.3097/LO.200701
  12. Moiseev P. A., Hagedorn F., Balakin D. S. et al. Stand biomass at treeline ecotone in Russian subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions // Forests. 2022. V. 13. № 2. Art. 254. https://doi.org/10.3390/f13020254
  13. Williams A. P., Allen C. D., Macalady A. K. et al. Temperature as a potent driver of regional forest drought stress and tree mortality // Nature Climate Change. 2013. V. 3. № 3. P. 292–297. https://doi.org/10.1038/nclimate1693
  14. Babushkina E. A., Zhirnova D. F., Belokopytova L. V. et al. Response of four tree species to changing climate in a moisture-limited area of South Siberia // Forests. 2019. V. 10. № 11. Art. 999. https://doi.org/10.3390/F10110999
  15. Devi N. M., Bubnov M. O., Kukarskih V. V. Geographic variability of the climate response of Scots pine (Pinus sylvestris L.) radial growth in the Middle Urals // Dendrochronologia. 2025. V. 91. Art. 126329. https://doi.org/10.1016/j.dendro.2025.126329
  16. Friedrichs D. A., Trouet V., Büntgen U. et al. Species-specific climate sensitivity of tree growth in Central-West Germany // Trees. 2009. V. 23. № 4. P. 729–739. https://doi.org/10.1007/s00468-009-0315-2
  17. Koprowski M., Przybylak R., Zielski A., Pospieszyńska A. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland // International Journal of Biometeorology. 2012. V. 56. № 1. P. 1–10. https://doi.org/10.1007/s00484-010-0390-5
  18. Misi D., Náfrádi K. Growth response of Scots pine to changing climatic conditions over the last 100 years: a case study from Western Hungary // Trees - Structure and Function. 2017. V. 31. № 3. P. 919–928. https://doi.org/10.1007/s00468-016-1517-z
  19. Solomina O. N., Kuznetsova V. V., Matskovskii V. V., Dolgova E. A. What determines the width of annual tree-rings in the central part of East-European plain? // Izvestiya Rossiiskaya Akademii Nauk. Seriya: Geograficheskaya. 2016. № 3. P. 47–64. https://doi.org/10.15356/0373-2444-2016-3-47-64
  20. Solomina O., Matskovsky V., Dolgova E. et al. Tree-ring data set for dendroclimatic reconstructions and dendrochronological dating in European Russia // Scientific Data. 2022. V. 9. № 1. P. 1–12. https://doi.org/10.1038/s41597-022-01456-6
  21. Кутявин И. Н., Манов А. В. Дендроклиматический анализ радиального прироста сосны (Pinus sylvestris L.) на Европейском Северо-Востоке России // Изв. РАН. Сер. географич. 2022. Т. 86. № 4. С. 547–562. https://doi.org/10.31857/S2587556622040070
  22. Huang J. A., Tardif J. C., Bergeron Y. et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest // Global Change Biology. 2010. V. 16. № 2. P. 711–731. https://doi.org/10.1111/j.1365-2486.2009.01990.x
  23. Hughes M. K., Olchev A., Bunn A. G. et al. Different climate responses of spruce and pine growth in Northern European Russia // Dendrochronologia. 2019. V. 56. Art. 125601. https://doi.org/10.1016/j.dendro.2019.05.005
  24. Jiao L., Xue R., Qi C. et al. Comparison of the responses of radial growth to climate change for two dominant coniferous tree species in the eastern Qilian Mountains, northwestern China // International J. of Biometeorology. 2021. V. 65. № 11. P. 1823–1836. https://doi.org/10.1007/s00484-021-02139-4
  25. Liu D., An Y., Li Z. et al. Differences and similarities in radial growth of Betula species to climate change // J. of Forestry Research. 2024. V. 35. № 1. Art. 40. https://doi.org/10.1007/s11676-023-01690-7
  26. Matskovsky V. Climatic signal in tree-ring width chronologies of conifers in European Russia // International J. of Climatology. 2016. V. 36. № 9. P. 3398–3406. https://doi.org/10.1002/joc.4563
  27. Yu D., Wang Q., Wang Y. et al. Climatic effects on radial growth of major tree species on Changbai Mountain // Annals of Forest Science. 2011. V. 68. № 5. P. 921–933. https://doi.org/10.1007/s13595-011-0098-7
  28. Иванов В. П., Марченко С. И., Нартов Д. И. и др. Влияние климатических факторов на радиальный прирост Pinus sylvestris и Picea abies (Pinaceae) на территории Брянской области // Растительные ресурсы. 2021. Т. 57. № 1. С. 39–48. https://doi.org/10.31857/S0033994621010052
  29. Pacheco A., Camarero J. J., Carrer M. Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate // Tree Physiology. 2016. V. 36. № 4. P. 502–512. https://doi.org/10.1093/treephys/tpv125
  30. Rita A., Camarero J. J., Colangelo M. et al. Wood anatomical traits respond to climate but more individualistically as compared to radial growth: analyze trees, not means // Forests. 2022. V. 13. № 6. Art. 956. https://doi.org/10.3390/f13060956
  31. Reich P. B., Sendall K. M., Stefanski A. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture // Nature. 2018. V. 562. № 7726. P. 263–267. https://doi.org/10.1038/s41586-018-0582-4
  32. Рысин Л. П., Савельева Л. И. Сосновые леса России. М.: Тов-во научн. изд. КМК, 2008. 289 с.
  33. Рысин Л. П., Савельева Л. И. Еловые леса России. М.: Наука, 2002. 335 с.
  34. Babushkina E., Belokopytova L., Zhirnova D. et al. Divergent growth trends and climatic response of Picea obovata along elevational gradient in Western Sayan mountains, Siberia // J. of Mountain Science. 2018. V. 15. № 11. P. 2378–2397. https://doi.org/10.1007/s11629-018-4974-6
  35. Belokopytova L., Zhirnova D., Kostyakova T. et al. Dynamics of moisture regime and its reconstruction from a tree-ring width chronology of Pinus sylvestris in the downstream basin of the Selenga River, Russia // J. of Arid Land. 2018. V. 10. № 6. P. 877–891. https://doi.org/10.1007/s40333-018-0025-y
  36. Dolgova E. A., Solomina O. N., Matskovsky V. V. et al. Climate signal strength in tree-ring width of spruce growing in the Solovetsky Islands (Russia) // Dendrochronologia. 2022. V. 76. Art. 126012. https://doi.org/10.1016/j.dendro.2022.126012
  37. Gao Y., Markkanen T., Aurela M. et al. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland // Biogeosciences. 2017. V. 14. № 18. P. 4409–4422. https://doi.org/10.5194/bg-14-4409-2017
  38. Tabakova M. A., Arzac A., Martínez E. et al. Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia // Dendrochronologia. 2020. V. 62. Art. 125709. https://doi.org/10.1016/j.dendro.2020.125709
  39. Удмуртская Республика: энциклопедия / Под ред. В. В. Туганаева. 2-е изд., испр. и доп. Ижевск: Удмуртия, 2008. 767 с.
  40. Rinn F. Tsap V 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation. Heidelberg, Germany: Bierhelder Weg, 1996. 263 p.
  41. Holmes R. L. Computer-assisted quality control in tree-ring dating and measurement // Tree-Ring Bulletin. 1983. V. 43. P. 69–78.
  42. Bunn A. G. A dendrochronology program library in R (dplR) // Dendrochronologia. 2008. V. 26. № 2. P. 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
  43. R Core Team. R: A Language and Environment for Statistical Computing. 2022.
  44. Zang C., Biondi F. Treeclim: An R package for the numerical calibration of proxy-climate relationships // Ecography. 2015. V. 38. № 4. P. 431–436. https://doi.org/10.1111/ecog.01335
  45. Jevšenak J. New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data // Dendrochronologia. 2020. V. 63. Art. 125753. https://doi.org/10.1016/j.dendro.2020.125753
  46. Wigley T. M. L., Briffa K. R., Jones P. D. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology // J. of Climate & Applied Meteorology. 1984. V. 23. № 2. P. 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
  47. Шиятов С. Г. Дендрохронология верхней границы леса на Урале. М.: Наука, 1986. 136 с.
  48. Bauwe A., Koch M., Kallweit R. et al. Tree-ring growth response of Scots pine (Pinus sylvestris L.) to climate and soil water availability in the lowlands of north-eastern Germany // Baltic Forestry. 2013. V. 19. № 2. P. 212–225.
  49. Larson J., Vigren C., Wallerman J. et al. Tree growth potential and its relationship with soil moisture conditions across a heterogeneous boreal forest landscape // Scientific Reports. 2024. V. 14. № 1. Art. 10611. https://doi.org/10.1038/s41598-024-61098-z
  50. Gurskaya M. A., Kukarskih V. V., Lange E. Reconstruction of summer month temperatures based on Scots pine tree-rings (Pinus sylvestris L.), growing in the Pechora River basin // Izvestiya Rossiiskaya Akademii Nauk. Seriya: Geograficheskaya. 2018. № 2. P. 59–73. https://doi.org/10.7868/S2587556618020061
  51. Zheleznova O. S., Tobratov S. A. Influence of climate on radial growth of Scots pine (Pinus sylvestris L.) in different habitats of Meshchera lowland // Izvestiya Rossiiskaya Akademii Nauk. Seriya: Geograficheskaya. 2019. № 5. P. 67–77. https://doi.org/10.31857/S2587-55662019567-77
  52. D’Andrea G., Šimunek V., Pericolo O. et al. Growth response of Norway spruce (Picea abies [L.] Karst.) in Central Bohemia (Czech Republic) to climate change // Forests. 2023. V. 14. № 6. Art. 1215. https://doi.org/10.3390/f14061215
  53. Grundmann B. M., Bolte A., Bonn S. et al. Impact of climatic variation on growth of Fagus sylvatica and Picea abies in Southern Sweden // Scandinavian J. of Forest Research. 2011. V. 26. № S11. P. 64–71. https://doi.org/10.1080/02827581.2011.564392
  54. Helama S., Lindholm M., Timonen M. et al. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2. Interannual to centennial variability in summer temperatures for 7500 years // The Holocene. 2016. V. 12. № 6. P. 681–687. https://doi.org/10.1191/0959683602hl581rp
  55. Тишин Д. В. Дендроклиматические исследования ели финской (Picea x fennica (Regel)) на южной границе ареала // Учен. зап. Казанского гос. ун-та. 2008. Т. 150. С. 219–225.
  56. Drobyshev I., Niklasson M., Angelstam P. Contrasting tree-ring data with fire record in a pine-dominated landscape in the Komi Republic (Eastern European Russia): recovering a common climate signal // Silva Fennica. 2004. V. 38. № 1. P. 43–53. https://doi.org/10.14214/sf.434
  57. Römer P., del Castillo E. M., Reinig F. et al. Growth characteristics and drought vulnerability of southwest German spruce and pine // European J. of Forest Research. 2025. V. 144. P. 393–409. https://doi.org/10.1007/s10342-025-01765-6
  58. Svystun T., Lundströmer J., Berlin M. et al. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage // Forest Ecology and Management. 2021. V. 493. Art. 119252. https://doi.org/10.1016/j.foreco.2021.119252
  59. Bowling D. R., Schädel C., Smith K. R. et al. Phenology of photosynthesis in winter-dormant temperate and boreal forests: long-term observations from flux towers and quantitative evaluation of phenology models // J. of Geophysical Research: Biogeosciences. 2024. V. 129. № 5. P. 1–25. https://doi.org/10.1029/2023JG007839
  60. Pederson N., Cook E. R., Jacoby G. C. et al. The influence of winter temperatures on the annual radial growth of six northern range margin tree species // Dendrochronologia. 2004. V. 22. № 1. P. 7–29. https://doi.org/10.1016/j.dendro.2004.09.005
  61. Vaganov E. A., Hughes M. K., Kirdyanov A. V. et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia // Nature. 1999. V. 400. № 6740. P. 149–151. https://doi.org/10.1038/22087
  62. Gao S., Liang E., Liu R. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas // Nature Ecology & Evolution. 2022. V. 6. № 4. P. 397–404. https://doi.org/10.1038/s41559-022-01668-4
  63. Coppola A., Leonelli G., Salvatore M. C. et al. Weakening climatic signal since mid-20th century in European larch tree-ring chronologies at different altitudes from Adamello-Presanella Massif (Italian Alps) // Quaternary Research. 2012. V. 77. № 3. P. 344–354. https://doi.org/10.1016/j.yqres.2012.01.004
  64. Büntgen U., Frank D. C., Schmidhalter M. et al. Growth/climate response shift in a long subalpine spruce chronology // Trees. 2006. V. 20. № 1. P. 99–110. https://doi.org/10.1007/s00468-005-0017-3
  65. Jiao L., Jiang Y., Zhang W. T. et al. Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China // Trees. 2015. V. 29. № 6. P. 1673–1686. https://doi.org/10.1007/s00468-015-1248-6
  66. Kuznetsova V. V., Solomina O. N. Contrasting climate signals across a Scots pine (Pinus sylvestris L.) tree-ring network in the Middle Volga (European Russia) // Dendrochronologia. 2022. V. 73. Art. 125957. https://doi.org/10.1016/j.dendro.2022.125957
  67. Marcinkowski K., Peterson D. L., Ettl G. J. Nonstationary temporal response of mountain hemlock growth to climatic variability in the North Cascade Range, Washington, USA // Canadian J. of Forest Research. 2015. V. 45. № 6. P. 676–688. https://doi.org/10.1139/cjfr-2014-0231

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).