Species richness of plant communities in continental Asia along the aridity gradient

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The relationship between the species richness of plant communities and the aridity was analyzed using a formalized analysis of 12 300 georeferenced geobotanical descriptions. A correlation was identified between these indicators. At Thornthwaite index values of 45–50, the highest species richness of phytocenoses is observed, which manifests in the southern part of the forest zone and the lower part of the mountain forest belt, where rich communities with complex vertical structures form.

About the authors

A. Yu. Korolyuk

Central Siberian Botanical Garden SB RAS; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk; China 830011 Urumqi

I. S. Chupina

Central Siberian Botanical Garden SB RAS

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk

Yuanye Liang

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences

Email: akorolyuk@rambler.ru
b, c, d China 830011 Urumqi; China 100049 Beijing; China 830011 Urumqi

A. A. Zverev

Central Siberian Botanical Garden SB RAS; National Research Tomsk State University; Sakhalin State University

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk; Russia 634050 Tomsk; Russia 693000 Yuzhno-Sakhalinsk

E. G. Zibzeev

Central Siberian Botanical Garden SB RAS

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk

E. K. Sinkovsky

Central Siberian Botanical Garden SB RAS

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk

N. A. Dulepova

Central Siberian Botanical Garden SB RAS

Email: akorolyuk@rambler.ru
Russia 630090 Novosibirsk

Lianlian Fan

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences

Email: akorolyuk@rambler.ru
China 830011 Urumqi; China 100049 Beijing; China 830011 Urumqi

Xuexi Ma

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences

Email: akorolyuk@rambler.ru
China 830011 Urumqi; China 100049 Beijing; China 830011 Urumqi

Yaoming Li

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences

Email: akorolyuk@rambler.ru
China 830011 Urumqi; China 100049 Beijing; China 830011 Urumqi

References

  1. Василевич В.И. Видовое разнообразие растительности // Сиб. экол. журн. 2009. № 4. С. 509–517.
  2. Миркин Б.М., Наумова Л.Г. Введение в современную науку о растительности. М.: ГЕОС, 2017. 280 с.
  3. Thornthwaite C.W. An approach toward a rational classification of climate // Geogr. Rev. 1948. V. 38. № 1. P. 55–94.
  4. Kimura R., Moriyama M. Recent Trends of Annual Aridity Indices and Classification of Arid Regions with Satellite-Based Aridity Indices // Remote Sens. Earth Syst. Sci. 2019. V. 2. P. 88–95. https://doi.org/10.1007/s41976-019-00014-w
  5. Berdugo M., Delgado-Baquerizo M., Soliveres S. et al. Global ecosystem thresholds driven by aridity // Science. 2020. V. 367. Iss. 6479. P. 787–790. https://doi.org/10.1126/science.aay5958
  6. Aschonitis V., Touloumidis D., ten Veldhuis M.-C., Coenders-Gerrits M. Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices // Earth Syst. Sci. Data. 2022. V. 14. P. 163–177. https://doi.org/10.5194/essd-14-163-2022
  7. Sandanov D.V., Liu Y., Wang Z., Korolyuk A.Yu. Woody and herbaceous plants of Inner Asia: species richness and ecogeorgraphic patterns // Contemporary Problems of Ecology. 2020. V. 13. P. 360–369. https://doi.org/10.1134/S1995425520040101
  8. Su X., Shrestha N., Xu X. et al. Phylogenetic conservatism and biogeographic affinity influence woody plant species richness–climate relationships in eastern Eurasia // Ecography. 2020. V. 43. P. 1027–1040. https://doi.org/10.1111/ecog.04839 https://doi.org/10.1111/ecog.0 4839
  9. Liu Y., Su X., Shrestha N. et al. Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms // Ecography. 2019. V. 42. P. 334–345. https://doi.org/10.1111/ecog.03698
  10. Song W., Li Y., Luo A. et al. Historical and contemporary climate jointly determine angiosperm plant diversity patterns across east Eurasia // Ecography. 2024. Art. e07062. https://doi.org/10.1111/ecog.07062
  11. Bhatta K.P., Mottl O., Felde V.A. et al. Latitudinal gradients in the phylogenetic assembly of angiosperms in Asia during the Holocene // Science Report. 2024. V. 14. Art. 17940. https://doi.org/10.1038/s41598-024-67650-1.
  12. Antonelli A., Kissling W.D., Flantua S.G.A. et al. Geological and climatic influences on mountain biodiversity // Nat. Geosci. 2018. V. 11. P. 718–725. https://doi.org/10.1038/s41561-018-0236-z
  13. Миркин Б.М., Наумова Л.Г. Современное состояние основных концепций науки о растительности. Уфа: “Гилем”, 2012. 488 с.
  14. Черепанов С.К. Сосудистые растения России и сопредельных государств (в пределах бывшего СССР). СПб.: “Мир и семья”, 1995. 992 с.
  15. Игнатов М.С., Афонина О.М., Игнатова E.A. и др. Список мхов Восточной Европы и Северной Азии // Arctoa. 2006. Т. 15. С. 1–130.
  16. Esslinger T.L. A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the Continental United States and Canada, Version 21 // Opuscula Philolichenum. 2016. V. 15. P. 136–390. https://doi.org/10.5962/p.386104
  17. Title P.O., Bemmels J.B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling // Ecography. 2018. V. 41. № 2. P. 291–307. https://doi.org/10.1101/075200 https://doi.org/10.1101/075200
  18. Телятников М.Ю. Сравнительный анализ локальных флор окрестностей озера Пясино // Растительный мир Азиатской России. 2009. № 1. С. 60–67.
  19. Lilliefors H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown // J. Amer. Stat. Assoc. 1967. V. 64. № 318. P. 399–402. https://doi.org/10.2307/2283970
  20. Shapiro S.S., Wilk M.B. An analysis of variance test for normality (Complete samples) // Biometrika. 1965. V. 52. № 3/4. P. 591–611. https://doi.org/10.2307/2333709
  21. Pearson K. On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling // Philosophy Magazine. 1900. V. 50. P. 157–172.
  22. Spearman C. The proof and measurement of association between two things // Am. J. Psychol. 1904. V. 15. № 1. P. 72–101. https://doi.org/10.2307/1412159
  23. Зверев А.А. Информационные технологии в исследованиях растительного покрова. Томск: ТМЛ-Пресс, 2007. 303 с.
  24. Zverev A.A. Methodological aspects of indicator values use in biodiversity analysis // Contemp. Probl. Ecol. 2020. V. 13. № 4. P. 321–332. https://doi.org/10.1134/S1995425520040125
  25. Hill T., Lewicki P. STATISTICS Methods and Applications. Tulsa: StatSoft, 2007. 832 p.
  26. Куминова А.В. Растительный покров Алтая. Новосибирск: Изд-во СО АН СССР, 1960. 450 с.
  27. Седельников В.П. Высокогорная растительность Алтае-Саянской горной области. Новосибирск: Наука, 1988. 223 с.
  28. Смагин В.Н., Ильинская С.А., Назимова Д.И. и др. Типы лесов гор Южной Сибири. Новосибирск: Наука, 1980. 336 с.
  29. Ермаков Н.Б. Разнообразие бореальной растительности Северной Азии: Гемибореальные леса. Классификация и ординация. Новосибирск: Издво СО РАН, 2003. 232 с.
  30. Chytrý M., Ermakov N., Danihelka J. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia // J. Veg. Sci. 2012. V. 23. P. 605–616. https://doi.org/10.1111/j.1654-1103.2011.01383.x
  31. Grubbs F.E. Procedures for detecting outlying observations in samples // Technometrics. 1969. V. 11. № 1. P. 1–21. https://doi.org/10.2307/1266761
  32. Stefansky W. Rejecting outliers in factorial designs // Technometrics. 1972. V. 14. № 2. P. 469–479. https://doi.org/10.2307/1267436

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).