Method for synthesizing optimal parameters of a hybrid powertrain with an electrochemical generator and a rechargeable energy storage system

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Due to the rapid growth of the electrified transport sector, one of the key issues in designing electrified vehicles is determining the optimal parameters of hybrid powertrains. This paper contains the study of an extra-large class urban passenger vehicle equipped with a hybrid powertrain (HPT) consisting of a rechargeable electrical energy storage system and an electrochemical generator. In order to define optimal parameters of a HPT, the method for synthesis of optimal parameters that accounts for the main design requirements and operational features of the studied vehicle is proposed.

AIM: Determination of the optimal parameters of a hybrid powertrain for a vehicle, taking into account technical and operational parameters and the actual operating modes of an extra-large class urban passenger vehicle.

METHODS: Optimization of the hybrid powertrain parameters is performed using a global search optimization algorithm included in the GlobalToolbox package of the MATLAB software. Simulation modeling methods in the Simulink software are used to calculate the optimization criterion.

RESULTS: The paper presents a formulation of the optimization problem for the hybrid powertrain parameters, a description of the simulation mathematical model in the Simulink software, verification of the mathematical model using the experimental data, and the results of synthesis of optimal parameters for various cell chemistries of the rechargeable electrical energy storage system.

CONCLUSION: As the study result, optimal parameters of the HPT of the extra-large class urban passenger vehicle were defined considering main technical and operational parameters. The practical value of this study lies in the possibility of using the proposed method for determining optimal parameters of hybrid powertrains in the design of commercial vehicles, in particular extra-large class passenger vehicles with a hybrid powertrain based on an electrochemical generator and a rechargeable electrical energy storage system.

About the authors

Viktor R. Anisimov

Moscow Polytechnic University; KAMAZ Innovation Center

Author for correspondence.
Email: rabota.viktor.1999@mail.ru
ORCID iD: 0000-0003-1268-6604
SPIN-code: 5036-8965

Postgraduate of the Advanced Engineering School of Electric Transport

Russian Federation, Moscow; Moscow

Alexander V. Klimov

Moscow Polytechnic University; KAMAZ Innovation Center

Email: klimmanen@mail.ru
ORCID iD: 0000-0002-5351-3622
SPIN-code: 7637-3104

Cand. Sci. (Engineering), Assistant professor of the Advanced Engineering School of Electric Transport, Head of the Electric Vehicles Department

Russian Federation, Moscow; Moscow

References

  1. Anisimov VR, Klimov AV. Analysis of the application of a fuel-cell generator in combined power plants. Gruzovik. 2024;(11):11–17. doi: 10.36652/1684-1298-2024-11-11-17 (In Russ.) EDN: XDNFMP
  2. Changizian S, Ahmadi P, Raeesi M, et al. Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. International Journal of Hydrogen Energy. 2020;45(60):35180–35197. doi: 10.1016/j.ijhydene.2020.01.015 EDN: GGVQUL
  3. Kumar D, Nema RK, Gupt, S. A comparative review on power conversion topologies and energy storage system for electric vehicles. International Journal of Energy Research. 2020;44(10):7863–7885. doi: 10.1002/er.5353 EDN: BGKKHO
  4. Offer GJ, Howarth R, Contestabile M, et al. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy. 2010;38(1):24–29. doi: 10.1016/j.enpol.2009.08.040
  5. Bonci M. Fuel Cell Vehicle Simulation: An Approach Based on Toyota Mirai. [Master’s Thesis] Torino, 2021. Accessed: 24.09.2025. Available from: https://webthesis.biblio.polito.it/secure/17641/1/tesi.pdf
  6. Njoya MS, Tremblay O, Dessaint LA. A generic fuel cell model for the simulation of fuel cell vehicles. Proc. IEEE VPPC. 2009:1–6. doi: 10.1109/VPPC.2009.5289692
  7. Xu L, Ouyang M, Li J, et al. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Applied Energy. 2013;103:477–487. doi: 10.1016/j.apenergy.2012.10.010
  8. Li W, Feng G, Jia S. An energy management strategy and parameter optimization of fuel cell electric vehicles. World Electr Veh J. 2022;13(1):21. doi: 10.3390/wevj13010021 EDN: IAXXFK
  9. Liu C, Liu L. Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin’s minimum principle. Int J Hydrogen Energy. 2015;40(24):7835–7846. doi: 10.1016/j.ijhydene.2015.04.112
  10. Li T, Liu H, Zhao D, Wang L. Design and analysis of a fuel cell–supercapacitor hybrid construction vehicle. Int J Hydrogen Energy. 2016;41(28):12307–12319. doi: 10.1016/j.ijhydene.2016.05.040
  11. Jain M, Desai C, Williamson SS. Genetic-algorithm-based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus. Proc. IEEE VPPC. 2009:980–985. doi: 10.1109/VPPC.2009.5289740
  12. Li G, Chen J, Zheng X, et al. Research on energy management strategy of hydrogen fuel cell vehicles. Proc. Chinese Automation Congress (CAC). 2020:7604–7607. doi: 10.1109/CAC51589.2020.9326669
  13. Hu X, Murgovski N, Johannesson LM, Egardt B. Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans Mechatron. 2015;20(1):457–468. doi: 10.1109/TMECH.2014.2336264
  14. Salmasi FR. Control strategies for hybrid electric vehicles: evolution, classification, comparison and future trends. IEEE Trans Veh Technol. 2007;56(5):2393–2404. doi: 10.1109/TVT.2007.899933
  15. Sciarretta A, Guzzella L. Control of hybrid electric vehicles. IEEE Control Syst Mag. 2007;27(2):60–70. doi: 10.1109/MCS.2007.338280
  16. Rizzoni G, Onori S. Energy management of hybrid electric vehicles: 15 years of development at the Ohio State University. Oil Gas Sci Technol – Rev IFP Energies nouvelles. 2015;70(1):41–54. doi: 10.2516/ogst/2014006
  17. Serrao L, Onori S, Rizzoni G. A comparative analysis of energy management strategies for hybrid electric vehicles. J Dyn Syst Meas Control. 2011;133(3):031012. doi: 10.1115/1.4003267
  18. Tate ED, Boyd SP. Finding ultimate limits of performance for hybrid electric vehicles. SAE Technical Paper. 2000. doi: 10.4271/2000-01-3099
  19. Delprat S, Lauber J, Guerra T-M, Rimaux J. Control of a Parallel Hybrid Powertrain: Optimal Control. IEEE Transactions on Vehicular Technology. 2004;53:872–881. doi: 10.1109/TVT.2004.827161
  20. Lin Ch-Ch, Peng H, Grizzle J, Kang J-M. Power management strategy for a parallel hybrid electric truck. Control Systems Technology. IEEE Transactions. 2003;11:839–849. doi: 10.1109/TCST.2003.815606
  21. Anisimov VR. Development of a mathematical model for calculating energy parameters of a hydrogen-powered vehicle with a combined power plant. Gruzovik. 2025;(7):15–21. doi: 10.36652/1684-1298-2025-7-15-21 (In Russ.) EDN: ORAHKW
  22. Chichekin IV, Levenkov IY, Zuenkov PI, Maksimov RO. Forming the steering-wheel angle control law to maintain a set vehicle trajectory. Trudy NAMI. 2019;3(278):53–61. (In Russ.) EDN: FGHOWX
  23. Klimov AV, Baurzhan KO, Akop VA, et al. Detecting wheel slip to suppress self-excited oscillations in braking mode. World Electr Veh J. 2024;15(8):340. doi: 10.3390/wevj15080340
  24. Keller A, Aliukov S, Anchukov V, et al. Investigations of power distribution in transmissions of heavy trucks. SAE Technical Paper. 2016. doi: 10.4271/2016-01-1100 EDN: FHAZAU
  25. Perez HE, Hu X, Dey S, Moura SJ. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Trans Veh Technol. 2017;66(9):7761–7770. doi: 10.1109/TVT.2017.2676044 EDN: WVWPYZ
  26. Pham QT, Oliver DW. Infiltration of air into cold stores. In: Proc. 16th Int. Congress of Refrigeration. 1983;4:67–72.
  27. Pulvirenti B, Puccetti G, Semprini G. Dynamic energy consumption modeling for HVAC systems in electric vehicles. Applied Sciences. 2025;15(7):3514. doi: 10.3390/app15073514 EDN: PNNTMK
  28. Jha KK, Bhanot V, Ryali V. A simple model for calculating vehicle thermal loads. SAE Technical Paper. 2013. doi: 10.4271/2013-01-0855

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methods to control hybrid energy powertrains.

Download (272KB)
3. Fig. 2. Simulation model of a vehicle in Simulink.

Download (489KB)
4. Fig. 3. Verification of the model for calculating the heat balance of a rechargeable electric energy storage system: а, experimental study of battery cooling; b, mathematical modeling of battery cooling; c, experimental study of battery warming up; d, mathematical modeling of battery warming up.

Download (526KB)
5. Fig. 4. Verification of the model for calculating the heat balance of a vehicle: а, experimental study of cabin heating; b, mathematical modeling of cabin heating; c, experimental study of cabin cooling; d, mathematical modeling of cabin cooling.

Download (393KB)
6. Fig. 5. Verification of the vehicle energy balance calculation.

Download (361KB)
7. Fig. 6. Results of the solution of the optimization problem for the chemistry of Lithium Iron Phosphate (LFP) battery cells: а, change in specific energy consumption depending on the battery capacity; b, change in battery capacity during the optimization process; c, change in specific energy consumption depending on the generator power; d, change in generator power during the optimization process.

Download (431KB)
8. Fig. 7. Results of the solution of the optimization problem for the chemistry of NMC523 battery cells: а, change in specific energy consumption depending on the battery capacity; b, change in battery capacity during the optimization process; c, change in specific energy consumption depending on the generator power; d, change in generator power during the optimization process.

Download (378KB)
9. Fig. 8. Results of the solution of the optimization problem for the chemistry of Lithium Titanate Oxide (LTO) battery cells: а, change in specific energy consumption depending on the battery capacity; b, change in battery capacity during the optimization process; c, change in specific energy consumption depending on the generator power; d, change in generator power during the optimization process.

Download (357KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).