THE MECHANISMS AND PATHWAYS TO OVERCOME THE ACQUIRED RESISTANCE OF TUMOR CELLS TO Mcl-1 ANTAGONISTS
- Authors: Pervushin N.V.1,2, Valdez Fernandez B.Y.2, Senichkin V.V.2, Yapryntseva M.A.1,2, Pavlov V.S.1, Zhivotovsky B.1,2,3, Kopeina G.S.1,2
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Faculty of Basic Medicine, Lomonosov Moscow State University
- Institute of Environmental Medicine, Karolinska Institute
- Issue: Vol 90, No 12 (2025)
- Pages: 2119-2138
- Section: Articles
- URL: https://ogarev-online.ru/0320-9725/article/view/376141
- DOI: https://doi.org/10.7868/S3034529425120156
- ID: 376141
Cite item
Abstract
Keywords
About the authors
N. V. Pervushin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Basic Medicine, Lomonosov Moscow State University
Email: lirroster@gmail.com
Moscow, Russia; Moscow, Russia
B. Y. Valdez Fernandez
Faculty of Basic Medicine, Lomonosov Moscow State UniversityMoscow, Russia
V. V. Senichkin
Faculty of Basic Medicine, Lomonosov Moscow State UniversityMoscow, Russia
M. A. Yapryntseva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Basic Medicine, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
V. S. Pavlov
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
B. Zhivotovsky
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Basic Medicine, Lomonosov Moscow State University; Institute of Environmental Medicine, Karolinska Institute
Email: boris.zhivotovsky@ki.se
Moscow, Russia; Moscow, Russia; Stockholm, Sweden
G. S. Kopeina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Basic Medicine, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.
- Hanahan, D. (2022) Hallmarks of cancer: new dimensions, Cancer Discov., 12, 31-46, https://doi.org/10.1158/2159-8290.CD-21-1059.
- Mustafa, M., Ahmad, R., Tantry, I. Q., Ahmad, W., Siddiqui, S., Alam, M., Abbas, K., Moinuddin, Hassan, M. I., Habib, S., and Islam, S. (2024) Apoptosis: a comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications, Cells, 13, 1838, https://doi.org/10.3390/cells13221838.
- Elmore, S. (2007) Apoptosis: a review of programmed cell death, Toxicol. Pathol., 35, 495-516, https://doi.org/10.1080/01926230701320337.
- Moyer, A., Tanaka, K., and Cheng, E. H. (2025) Apoptosis in cancer biology and therapy, Annu. Rev. Pathol., 20, 303-328, https://doi.org/10.1146/annurev-pathmechdis-051222-115023.
- Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat. Rev. Mol. Cell Biol., 15, 49-63, https://doi.org/10.1038/nrm3722.
- Czabotar, P. E., and Garcia-Saez, A. J. (2023) Mechanisms of BCL-2 family proteins in mitochondrial apoptosis, Nat. Rev. Mol. Cell Biol., 24, 732-748, https://doi.org/10.1038/s41580-023-00629-4.
- Senichkin, V. V., Pervushin, N. V., Zuev, A. P., Zhivotovsky, B., and Kopeina, G. S. (2020) Targeting Bcl-2 family proteins: what, where, when? Biochemistry (Moscow), 85, 1210-1226, https://doi.org/10.1134/S0006297920100090.
- Croce, C. M., Vaux, D., Strasser, A., Opferman, J. T., Czabotar, P. E., and Fesik, S. W. (2025) The BCL-2 protein family: from discovery to drug development, Cell Death Differ., 32, 1369-1381, https://doi.org/10.1038/s41418-025-01481-z.
- Vogler, M., Braun, Y., Smith, V. M., Westhoff, M.-A., Pereira, R. S., Pieper, N. M., Anders, M., Callens, M., Vervliet, T., Abbas, M., Macip, S., Schmid, R., Bultynck, G., and Dyer, M. J. (2025) The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy, Signal Transduct. Targeted Ther., 10, 91, https://doi.org/10.1038/s41392-025-02176-0.
- Adams, J. M., and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival, Science, 281, 1322-1326, https://doi.org/10.1126/science.281.5381.1322.
- Burlacu, A. (2003) Regulation of apoptosis by Bcl-2 family proteins, J. Cell. Mol. Med., 7, 249-257, https://doi.org/10.1111/j.1582-4934.2003.tb00225.x.
- Westphal, D., Kluck, R. M., and Dewson, G. (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis, Cell Death Differ., 21, 196-205, https://doi.org/10.1038/cdd.2013.139.
- Peña-Blanco, A., and García-Sáez, A. J. (2018) Bax, Bak and beyond – mitochondrial performance in apoptosis, FEBS J., 285, 416-431, https://doi.org/10.1111/febs.14186.
- Kale, J., Osterlund, E. J., and Andrews, D. W. (2018) BCL-2 family proteins: changing partners in the dance towards death, Cell Death Differ., 25, 65-80, https://doi.org/10.1038/cdd.2017.186.
- Glab, J. A., Mbogo, G. W., and Puthalakath, H. (2017) BH3-only proteins in health and disease, Int. Rev. Cell Mol. Biol., 328, 163-196, https://doi.org/10.1016/bs.ircmb.2016.08.005.
- Doerflinger, M., Glab, J. A., and Puthalakath, H. (2015) BH3-only proteins: a 20-year stock-take, FEBS J., 282, 1006-1016, https://doi.org/10.1111/febs.13190.
- Pervushin, N. V., Nilov, D. K., Zhivotovsky, B., and Kopeina, G. S. (2025) Bcl-2 modifying factor (Bmf): “a mysterious stranger” in the Bcl-2 family proteins, Cell Death Differ., https://doi.org/10.1038/s41418-025-01562-z.
- Pervushin, N. V., Kopeina, G. S., and Zhivotovsky, B. (2023) Bcl-B: an “unknown” protein of the Bcl-2 family, Biol. Direct, 18, 69, https://doi.org/10.1186/s13062-023-00431-4.
- Pervushin, N. V., Senichkin, V. V., Zhivotovsky, B., and Kopeina, G. S. (2020) Mcl-1 as a “barrier” in cancer treatment: can we target it now? Int. Rev. Cell Mol. Biol., 351, 23-55, https://doi.org/10.1016/bs.ircmb.2020.01.002.
- Kaloni, D., Diepstraten, S. T., Strasser, A., and Kelly, G. L. (2023) BCL-2 protein family: attractive targets for cancer therapy, Apoptosis, 28, 20-38, https://doi.org/10.1007/s10495-022-01780-7.
- Garner, T. P., Lopez, A., Reyna, D. E., Spitz, A. Z., and Gavathiotis, E. (2017) Progress in targeting the BCL-2 family of proteins, Curr. Opin. Chem. Biol., 39, 133-142, https://doi.org/10.1016/j.cbpa.2017.06.014.
- Cavallo, M. R., Yo, J. C., Gallant, K. C., Cunanan, C. J., Amirfallah, A., Daniali, M., Sanders, A. B., Aplin, A. E., Pribitkin, E. A., and Hartsough, E. J. (2024) Mcl-1 mediates intrinsic resistance to RAF inhibitors in mutant BRAF papillary thyroid carcinoma, Cell Death Discov., 10, 175, https://doi.org/10.1038/s41420-024-01945-0.
- Dolnikova, A., Kazantsev, D., Klanova, M., Pokorna, E., Sovilj, D., Kelemen, C. D., Tuskova, L., Hoferkova, E., Mraz, M., Helman, K., Curik, N., Machova Polakova, K., Andera, L., Trneny, M., and Klener, P. (2024) Blockage of BCL-XL overcomes venetoclax resistance across BCL2+ lymphoid malignancies irrespective of BIM status, Blood Adv., 8, 3532-3543, https://doi.org/10.1182/bloodadvances.2024012906.
- Townsend, P. A., Kozhevnikova, M. V., Cexus, O. N. F., Zamyatnin, A. A., and Soond, S. M. (2021) BH3-mimetics: recent developments in cancer therapy, J. Exp. Clin. Cancer Res., 40, 355, https://doi.org/10.1186/s13046-021-02157-5.
- Seymour, J. (2019) Venetoclax, the first BCL-2 inhibitor for use in patients with chronic lymphocytic leukemia, Clin. Adv. Hematol. Oncol., 17, 440-443.
- Brinkmann, K., McArthur, K., Malelang, S., Gibson, L., Tee, A., Elahee Doomun, S. N., Rowe, C. L., Arandjelovic, P., Marchingo, J. M., D’Silva, D., Bachem, A., Monard, S., Whelan, L. G., Dewson, G., Putoczki, T. L., Bouillet, P., Fu, N. Y., Brown, K. K., Kueh, A. J., Wimmer, V. C., Herold, M. J., Thomas, T., Voss, A. K., and Strasser, A. (2025) Relative importance of the anti-apoptotic versus apoptosis-unrelated functions of MCL-1 in vivo, Science, 389, 1003-1011, https://doi.org/10.1126/science.adw1836.
- Perciavalle, R. M., Stewart, D. P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M. M., Pelletier, S., Schuetz, J. D., Youle, R. J., Green, D. R., and Opferman, J. T. (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration, Nat. Cell Biol., 14, 575-583, https://doi.org/10.1038/ncb2488.
- Senichkin, V. V., Streletskaia, A. Y., Gorbunova, A. S., Zhivotovsky, B., and Kopeina, G. S. (2020) Saga of Mcl-1: regulation from transcription to degradation, Cell Death Differ., 27, 405-419, https://doi.org/10.1038/s41418-019-0486-3.
- Senichkin, V. V., Streletskaia, A. Y., Zhivotovsky, B., and Kopeina, G. S. (2019) Molecular comprehension of Mcl-1: from gene structure to cancer therapy, Trends Cell Biol., 29, 549-562, https://doi.org/10.1016/j.tcb.2019.03.004.
- Pervushin, N. V., Senichkin, V. V., Kapusta, A. A., Gorbunova, A. S., Kaminskyy, V. O., Zhivotovsky, B., and Kopeina, G. S. (2020) Nutrient deprivation promotes MCL-1 degradation in an autophagy-independent manner, Biochemistry (Moscow), 85, 1235-1244, https://doi.org/10.1134/S0006297920100119.
- Srivastava, S., Sekar, G., Ojoawo, A., Aggarwal, A., Ferreira, E., Uchikawa, E., Yang, M., Grace, C. R., Dey, R., Lin, Y.-L., Guibao, C. D., Jayaraman, S., Mukherjee, S., Kossiakoff, A. A., Dong, B., Myasnikov, A., and Moldoveanu, T. (2025) Structural basis of BAK sequestration by MCL-1 in apoptosis, Mol. Cell, 85, 1606-1623.e10, https://doi.org/10.1016/j.molcel.2025.03.013.
- Senichkin, V. V., Pervushin, N. V., Zamaraev, A. V., Sazonova, E. V., Zuev, A. P., Streletskaia, A. Y., Prikazchikova, T. A., Zatsepin, T. S., Kovaleva, O. V., Tchevkina, E. M., Zhivotovsky, B., and Kopeina, G. S. (2021) Bak and Bcl-xL participate in regulating sensitivity of solid tumor derived cell lines to Mcl-1 inhibitors, Cancers, 14, 181, https://doi.org/10.3390/cancers14010181.
- Gomez-Bougie, P., Ménoret, E., Juin, P., Dousset, C., Pellat-Deceunynck, C., and Amiot, M. (2011) Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction, Biochem. Biophys. Res. Commun., 413, 460-464, https://doi.org/10.1016/j.bbrc.2011.08.118.
- Tantawy, S. I., Timofeeva, N., Sarkar, A., and Gandhi, V. (2023) Targeting MCL-1 protein to treat cancer: opportunities and challenges, Front. Oncol., 13, 1226289, https://doi.org/10.3389/fonc.2023.1226289.
- Mason, K. D., Carpinelli, M. R., Fletcher, J. I., Collinge, J. E., Hilton, A. A., Ellis, S., Kelly, P. N., Ekert, P. G., Metcalf, D., Roberts, A. W., Huang, D. C. S., and Kile, B. T. (2007) Programmed anuclear cell death delimits platelet life span, Cell, 128, 1173-1186, https://doi.org/10.1016/j.cell.2007.01.037.
- Vasan, N., Baselga, J., and Hyman, D. M. (2019) A view on drug resistance in cancer, Nature, 575, 299-309, https://doi.org/10.1038/s41586-019-1730-1.
- Moujalled, D. M., Brown, F. C., Chua, C. C., Dengler, M. A., Pomilio, G., Anstee, N. S., Litalien, V., Thompson, E., Morley, T., MacRaild, S., Tiong, I. S., Morris, R., Dun, K., Zordan, A., Shah, J., Banquet, S., Halilovic, E., Morris, E., Herold, M. J., Lessene, G., Adams, J. M., Huang, D. C. S., Roberts, A. W., Blombery, P., and Wei, A. H. (2023) Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia, Blood, 141, 634-644, https://doi.org/10.1182/blood.2022016090.
- Zielonka, K., and Jamroziak, K. (2024) Mechanisms of resistance to venetoclax in hematologic malignancies, Adv. Clin. Exp. Med., 33, 1421-1433, https://doi.org/10.17219/acem/181145.
- Maragno, A.-L., Seiss, K., Newcombe, R., Mistry, P., Schnell, C. R., Von Arx, F., Koenig, J., Malamas, A. S., Le Toumelin-Braizat, G., Bresson, L., Rocchetti, F., Demarles, D., Kurth, E., Renteria, L., Hainzl, D., Engelhardt, V., Liot, C., Madelain, V., Kostova, V., Starck, J.-B., Valour, D., Franzetti, G.-A., Colland, F., Vostiarova, H., Tschantz, W. R., Bachmann, N., Palacio-Ramirez, S., Burger, M. T., Campbell, J. M., Chen, Z., Koenig, R., McNeill, E., Mo, R., Nakajima, K., Palermo, M. G., Shen, Y., Yu, B., Zambrowski, M., Zhang, A., Zecri, F., Broniscer, A., Geneste, O., Horton, K., and D’Alessio, J. A. (2024) S227928: A novel anti-CD74 ADC with MCL-1 inhibitor payload for the treatment of acute myeloid leukemia (AML) and other hematologic malignancies, Blood, 144, 1381-1381, https://doi.org/10.1182/blood-2024-210048.
- Gongalsky, M. B., Tsurikova, U. A., Kudryavtsev, A. A., Pervushin, N. V., Sviridov, A. P., Kumeria, T., Egoshina, V. D., Tyurin-Kuzmin, P. A., Naydov, I. A., Gonchar, K. A., Kopeina, G. S., Andreev, V. G., Zhivotovsky, B., and Osminkina, L. A. (2025) Amphiphilic photoluminescent porous silicon nanoparticles as effective agents for ultrasound-amplified cancer therapy, ACS Appl. Mater. Interf., 17, 374-385, https://doi.org/10.1021/acsami.4c15725.
- Gongalsky, M. B., Pervushin, N. V., Maksutova, D. E., Tsurikova, U. A., Putintsev, P. P., Gyuppenen, O. D., Evstratova, Y. V., Shalygina, O. A., Kopeina, G. S., Kudryavtsev, A. A., Zhivotovsky, B., and Osminkina, L. A. (2021) Optical monitoring of the biodegradation of porous and solid silicon nanoparticles, Nanomaterials (Basel, Switzerland), 11, 2167, https://doi.org/10.3390/nano11092167.
- Crowley, L. C., Marfell, B. J., Scott, A. P., Boughaba, J. A., Chojnowski, G., Christensen, M. E., and Waterhouse, N. J. (2016) Dead cert: measuring cell death, Cold Spring Harb. Protocols, 2016, pdb.top070318, https://doi.org/10.1101/pdb.top070318.
- Plesca, D., Mazumder, S., and Almasan, A. (2008) DNA damage response and apoptosis, Methods Enzymol., 446, 107-122, https://doi.org/10.1016/S0076-6879(08)01606-6.
- Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45, https://doi.org/10.1093/nar/29.9.e45.
- Pervushin, N. V., Nilov, D. K., Pushkarev, S. V., Shipunova, V. O., Badlaeva, A. S., Yapryntseva, M. A., Kopytova, D. V., Zhivotovsky, B., and Kopeina, G. S. (2024) BH3-mimetics or DNA-damaging agents in combination with RG7388 overcome p53 mutation-induced resistance to MDM2 inhibition, Apoptosis, 29, 2197-2213.https://doi.org/10.1007/s10495-024-02014-8.
- Leroy, B., Girard, L., Hollestelle, A., Minna, J. D., Gazdar, A. F., and Soussi, T. (2014) Analysis of TP53 mutation status in human cancer cell lines: a reassessment, Hum. Mutat., 35, 756-765, https://doi.org/10.1002/humu.22556.
- Al-Ghabkari, A., and Narendran, A. (2019) In vitro characterization of a potent p53-MDM2 Inhibitor, RG7112 in neuroblastoma cancer cell lines, Cancer Biother. Radiopharmaceut., 34, 252-257, https://doi.org/10.1089/cbr.2018.2732.
- Ajay, A. K., Meena, A. S., and Bhat, M. K. (2012) Human papillomavirus 18 E6 inhibits phosphorylation of p53 expressed in HeLa cells, Cell Biosci., 2, 2, https://doi.org/10.1186/2045-3701-2-2.
- Diepstraten, S. T., Yuan, Y., La Marca, J. E., Young, S., Chang, C., Whelan, L., Ross, A. M., Fischer, K. C., Pomilio, G., Morris, R., Georgiou, A., Litalien, V., Brown, F. C., Roberts, A. W., Strasser, A., Wei, A. H., and Kelly, G. L. (2024) Putting the STING back into BH3-mimetic drugs for TP53-mutant blood cancers, Cancer Cell, 42, 850-868.e9, https://doi.org/10.1016/j.ccell.2024.04.004.
- Gentile, M., Petrungaro, A., Uccello, G., Vigna, E., Recchia, A. G., Caruso, N., Bossio, S., De Stefano, L., Palummo, A., Storino, F., Martino, M., and Morabito, F. (2017) Venetoclax for the treatment of chronic lymphocytic leukemia, Expert Opin. Invest. Drugs, 26, 1307-1316, https://doi.org/10.1080/13543784.2017.1386173.
- McDermott, M., Eustace, A. J., Busschots, S., Breen, L., Crown, J., Clynes, M., O’Donovan, N., and Stordal, B. (2014) In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies, Front. Oncol., 4, 40, https://doi.org/10.3389/fonc.2014.00040.
- Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature, 371, 346-347, https://doi.org/10.1038/371346a0.
- Gottesman, M. M., Pastan, I., and Ambudkar, S. V. (1996) P-glycoprotein and multidrug resistance, Curr. Opin. Genetics Dev., 6, 610-617, https://doi.org/10.1016/s0959-437x(96)80091-8.
- Dong, J., Yuan, L., Hu, C., Cheng, X., and Qin, J.-J. (2023) Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): an updated review, Pharmacol. Ther., 249, 108488, https://doi.org/10.1016/j.pharmthera.2023.108488.
- Bolomsky, A., Miettinen, J. J., Malyutina, A., Besse, A., Huber, J., Fellinger, S., Breid, H., Parsons, A., Klavins, K., Hannich, J. T., Kubicek, S., Caers, J., Hübl, W., Schreder, M., Zojer, N., Driessen, C., Tang, J., Besse, L., Heckman, C. A., and Ludwig, H. (2021) Heterogeneous modulation of Bcl-2 family members and drug efflux mediate MCL-1 inhibitor resistance in multiple myeloma, Blood Adv., 5, 4125-4139, https://doi.org/10.1182/bloodadvances.2020003826.
- Olejniczak, S. H., Hernandez-Ilizaliturri, F. J., Clements, J. L., and Czuczman, M. S. (2008) Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression, Clin. Cancer Res., 14, 1550-1560, https://doi.org/10.1158/1078-0432.CCR-07-1255.
- Dolcet, X., Llobet, D., Pallares, J., and Matias-Guiu, X. (2005) NF-kB in development and progression of human cancer, Virchows Arch., 446, 475-482, https://doi.org/10.1007/s00428-005-1264-9.
- Lin, J., Song, T., Li, C., and Mao, W. (2020) GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer, Biochim. Biophys. Acta, 1867, 118659, https://doi.org/10.1016/j.bbamcr.2020.118659.
- Duda, P., Akula, S. M., Abrams, S. L., Steelman, L. S., Martelli, A. M., Cocco, L., Ratti, S., Candido, S., Libra, M., Montalto, G., Cervello, M., Gizak, A., Rakus, D., and McCubrey, J. A. (2020) Targeting GSK3 and associated signaling pathways involved in cancer, Cells, 9, 1110, https://doi.org/10.3390/cells9051110.
- Wang, R., Xia, L., Gabrilove, J., Waxman, S., and Jing, Y. (2013) Downregulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells, Leukemia, 27, 315-324, https://doi.org/10.1038/leu.2012.180.
- Kang, X.-H., Zhang, J.-H., Zhang, Q.-Q., Cui, Y.-H., Wang, Y., Kou, W.-Z., Miao, Z.-H., Lu, P., Wang, L.-F., Xu, Z.-Y., and Cao, F. (2017) Degradation of Mcl-1 through GSK-3β activation regulates apoptosis induced by bufalin in non-small cell lung cancer H1975 cells, Cell. Physiol. Biochem., 41, 2067-2076, https://doi.org/10.1159/000475438.
- Fallatah, M. M. J., Law, F. V., Chow, W. A., and Kaiser, P. (2023) Small-molecule correctors and stabilizers to target p53, Trends Pharmacol. Sci., 44, 274-289, https://doi.org/10.1016/j.tips.2023.02.007.
- Hassin, O., and Oren, M. (2023) Drugging p53 in cancer: one protein, many targets, Nature Reviews Drug Discovery, 22, 127-144, https://doi.org/10.1038/s41573-022-00571-8.
- Levine, A. J. (2020) p53: 800 million years of evolution and 40 years of discovery, Nat. Rev. Cancer, 20, 471-480, https://doi.org/10.1038/s41568-020-0262-1.
- Shuvalov, O., Kizenko, A., Shakirova, A., Fedorova, O., Petukhov, A., Aksenov, N., Vasileva, E., Daks, A., and Barlev, N. (2018) Nutlin sensitizes lung carcinoma cells to interferon-alpha treatment in MDM2-dependent but p53-independent manner, Biochem. Biophys. Res. Commun., 495, 1233-1239, https://doi.org/10.1016/j.bbrc.2017.11.118.
- Lau, L. M. S., Nugent, J. K., Zhao, X., and Irwin, M. S. (2008) HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function, Oncogene, 27, 997-1003, https://doi.org/10.1038/sj.onc.1210707.
- Ambrosini, G., Sambol, E. B., Carvajal, D., Vassilev, L. T., Singer, S., and Schwartz, G. K. (2007) Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1, Oncogene, 26, 3473-3481, https://doi.org/10.1038/sj.onc.1210136.
- Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E. A. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science, 303, 844-848, https://doi.org/10.1126/science.1092472.
- Sazonova, E. V., Yapryntseva, M. A., Pervushin, N. V., Tsvetcov, R. I., Zhivotovsky, B., and Kopeina, G. S. (2024) Cancer drug resistance: targeting proliferation or programmed cell death, Cells, 13, 388, https://doi.org/10.3390/cells13050388.
- Amaral, M. V. S., de Sousa Portilho, A. J., DA Silva, E. L., de Oliveira Sales, L., da Silva Maués, J. H., de Moraes, M. E. A., and Moreira-Nunes, C. A. (2019) Establishment of drug-resistant cell lines as a model in experimental oncology: a review, Anticancer Res., 39, 6443-6455, https://doi.org/10.21873/anticanres.13858.
- Ong, F., Kim, K., and Konopleva, M. Y. (2022) Venetoclax resistance: mechanistic insights and future strategies, Cancer Drug Resist., 5, 380-400, https://doi.org/10.20517/cdr.2021.125.
- Liu, J., Li, S., Wang, Q., Feng, Y., Xing, H., Yang, X., Guo, Y., Guo, Y., Sun, H., Liu, X., Yang, S., Mei, Z., Zhu, Y., Cheng, Z., Chen, S., Xu, M., Zhang, W., Wan, N., Wang, J., Ma, Y., Zhang, S., Luan, X., Xu, A., Li, L., Wang, H., Yang, X., Hong, Y., Xue, H., Yuan, X., Hu, N., Song, X., Wang, Z., Liu, X., Wang, L., and Liu, Y. (2024) Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy, Blood, 143, 1825-1836, https://doi.org/10.1182/blood.2023019706.
- Sakamoto, I., Yamada, T., Ohwada, S., Koyama, T., Nakano, T., Okabe, T., Hamada, K., Kawate, S., Takeyoshi, I., Iino, Y., and Morishita, Y. (2004) Mutational analysis of the BAK gene in 192 advanced gastric and colorectal cancers, Int. J. Mol. Med., 13, 53-55, https://doi.org/10.3892/ijmm.13.1.53.
- Pervushin, N. V., Yapryntseva, M. A., Panteleev, M. A., Zhivotovsky, B., and Kopeina, G. S. (2024) Cisplatin resistance and metabolism: simplification of complexity, Cancers, 16, 3082, https://doi.org/10.3390/cancers16173082.
- Tang, G., Cao, X., Chen, J., Hui, F., Xu, N., Jiang, Y., Lu, H., Xiao, H., Liang, X., Ma, M., Qian, Y., Liu, D., Wang, Z., Liu, S., Yu, G., and Sun, L. (2025) Repurposing MDM2 inhibitor RG7388 for TP53-mutant NSCLC: a p53-independent pyroptotic mechanism via ROS/p-p38/NOXA/caspase-3/GSDME axis, Cell Death Dis., 16, 452, https://doi.org/10.1038/s41419-025-07770-2.
Supplementary files


