MITOCHONDRIAL LIPID PEROXIDATION INITIATES RAPID ACCUMULATION OF LIPOFUSCIN IN CELL CULTURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It was shown that the enhancement of lipid peroxidation (LPO) in mitochondria of rat H9c2 cardiomyoblasts and human fibroblasts under the action of the cystine transport inhibitor erastin or the glutathione peroxidase-4 inhibitor RSL3 is accompanied by rapid (18 h) accumulation of lipofuscin. The mitochondria-targeted antioxidant SkQ1 and the redox mediator methylene blue, which prevents the formation of reactive oxygen species (ROS) in complex I of the mitochondrial respiratory chain, blocked both mitochondrial LPO and lipofuscin accumulation. These data indicate that mitochondrial LPO serves as a driving force for the accelerated accumulation of lipofuscin in cells. In isolated heart mitochondria, rapid (24 h) formation of lipofuscin was observed, which depended on the presence of iron ions, was significantly accelerated by ROS generated in complex I of the respiratory chain, and was blocked by SkQ1. The question of whether oxidized components of mitochondria serve as the initial material for lipofuscin formation in cells remains open. The obtained results give hope for the successful application of mitochondria-targeted compounds in the treatment of many diseases associated with excessive accumulation of lipofuscin.

About the authors

H. He

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

A. A. Panteleeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

R. A. Simonyan

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

A. V. Avetisyan

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

K. G. Lyamzaev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Russian Gerontological Research and Clinical Center, Russian National Research Medical University named after N. I. Pirogov, Ministry of Health of the Russian Federation

Email: lyamzaev@gmail.com
Moscow, Russia; Moscow, Russia; Moscow, Russia

B. V. Chernyak

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Russian Gerontological Research and Clinical Center, Russian National Research Medical University named after N. I. Pirogov, Ministry of Health of the Russian Federation

Moscow, Russia; Moscow, Russia; Moscow, Russia

References

  1. Hannover, A. (1842) Mikroskopiske undersögelser af nervesystemet, Kabernes Selkobs Naturv. Math. Afh. Copenhagen, 10, 1-112.
  2. Hohn, A., Jung, T., Grimm, S., and Grune, T. (2010) Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells, Free Radic. Biol. Med., 48, 1100-1108, https://doi.org/10.1016/j.freeradbiomed.2010.01.030.
  3. Lee, F. Y., Lee, T. S., Pan, C. C., Huang, A. L., and Chau, L. Y. (1998) Colocalization of iron and ceroid in human atherosclerotic lesions, Atherosclerosis, 138, 281-288, https://doi.org/10.1016/S0021-9150(98)00033-1.
  4. Ablonczy, Z., Smith, N., Anderson, D. M., Grey, A. C., Spraggins, J., Koutalos, Y., Schey, K. L., and Crouch, R. K. (2014) The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry, Proteomics, 14, 936-944, https://doi.org/10.1002/pmic.201300406.
  5. Feldman, T. B., Dontsov, A. E., Yakovleva, M. A., and Ostrovsky, M. A. (2022) Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age, Biophys. Rev., 14, 1051-1065, https://doi.org/10.1007/s12551-022-00989-9.
  6. Hohn, A., Sittig, A., Jung, T., Grimm, S., and Grune, T. (2012) Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts, Free Radic. Biol. Med., 53, 1760-1769, https://doi.org/10.1016/j.freeradbiomed.2012.08.591.
  7. Ivy, G. O., Kanai, S., Ohta, M., Smith, G., Sato, Y., Kobayashi, M., and Kitani, K. (1989) Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition, Adv. Exp. Med. Biol., 266, 31-45, https://doi.org/10.1007/978-1-4899-5339-1_3.
  8. Terman, A., Kurz, T., Navratil, M., Arriaga, E. A., and Brunk, U. T. (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging, Antioxid. Redox Signal., 12, 503-535, https://doi.org/10.1089/ars.2009.2598.
  9. Ottis, P., Koppe, K., Onisko, B., Dynin, I., Arzberger, T., Kretzschmar, H., Requena, J. R., Silva, C. J., Huston, J. P., and Korth, C. (2012) Human and rat brain lipofuscin proteome, Proteomics, 12, 2445-2454, https://doi.org/10.1002/pmic.201100668.
  10. Li, W. W., Wang, H. J., Tan, Y. Z., Wang, Y. L., Yu, S. N., and Li, Z. H. (2021) Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy, Exp. Cell Res., 403, 112585, https://doi.org/10.1016/j.yexcr.2021.112585.
  11. Walter, S., Haseli, S. P., Baumgarten, P., Deubel, S., Jung, T., Hohn, A., Ott, C., and Grune, T. (2025) Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition, Redox Biol., 81, 103559, https://doi.org/10.1016/j.redox.2025.103559.
  12. Davies, S., Elliott, M. H., Floor, E., Truscott, T. G., Zareba, M., Sarna, T., Shamsi, F. A., and Boulton, M. E. (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells, Free Radic. Biol. Med., 31, 256-265, https://doi.org/10.1016/S0891-5849(01)00582-2.
  13. Baldensperger, T., Jung, T., Heinze, T., Schwerdtle, T., Hohn, A., and Grune, T. (2024) The age pigment lipofuscin causes oxidative stress, lysosomal dysfunction, and pyroptotic cell death, Free Radic. Biol. Med., 225, 871-880, https://doi.org/10.1016/j.freeradbiomed.2024.10.311.
  14. Porta, E., Llesuy, S., Monserrat, A. J., Benavides, S., and Travacio, M. (1995) Changes in cathepsin B and lipofuscin during development and aging in rat brain and heart, Gerontology, 41, 81-93, https://doi.org/10.1159/000213727.
  15. Nakano, M., Oenzil, F., Mizuno, T., and Gotoh, S. (1995) Age-related changes in the lipofuscin accumulation of brain and heart, Gerontology, 41, 69-79, https://doi.org/10.1159/000213726.
  16. Kakimoto, Y., Okada, C., Kawabe, N., Sasaki, A., Tsukamoto, H., Nagao, R., and Osawa, M. (2019) Myocardial lipofuscin accumulation in ageing and sudden cardiac death, Sci. Rep., 9, 3304, https://doi.org/10.1038/s41598-019-40250-0.
  17. Faragher, R. G. A. (2021) Simple detection methods for senescent cells: opportunities and challenges, Front. Aging, 2, 686382, https://doi.org/10.3389/fragi.2021.686382.
  18. Barbouti, A., Lagopati, N., Veroutis, D., Goulas, V., Evangelou, K., Kanavaros, P., Gorgoulis, V. G., and Galaris, D. (2021) Implication of dietary iron-chelating bioactive compounds in molecular mechanisms of oxidative stress-induced cell ageing, Antioxidants (Basel), 10, 491, https://doi.org/10.3390/antiox10030491.
  19. Naseri, N. N., Ergel, B., Kharel, P., Na, Y., Huang, Q., Huang, R., Dolzhanskaya, N., Burre, J., Velinov, M. T., and Sharma, M. (2020) Aggregation of mutant cysteine string protein-alpha via Fe-S cluster binding is mitigated by iron chelators, Nat. Struct. Mol. Biol., 27, 192-201, https://doi.org/10.1038/s41594-020-0375-y.
  20. Yin, D. (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores, Free Radic. Biol. Med., 21, 871-888, https://doi.org/10.1016/0891-5849(96)00175-X.
  21. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, 149, 1060-1072, https://doi.org/10.1016/j.cell.2012.03.042.
  22. Berndt, C., Alborzinia, H., Amen, V. S., Ayton, S., Barayeu, U., Bartelt, A., Bayir, H., Bebber, C. M., Birsoy, K., Bottcher, J. P., Brabletz, S., Brabletz, T., Brown, A. R., Brune, B., Bulli, G., Bruneau, A., Chen, Q., DeNicola, G. M., Dick, T. P., Distefano, A., Dixon, S. J., Engler, J. B., Esser-von Bieren, J., Fedorova, M., Friedmann Angeli, J. P., Friese, M. A., Fuhrmann, D. C., Garcia-Saez, A. J., Garbowicz, K., Gotz, M., Gu, W., Hammerich, L., Hassannia, B., Jiang, X., Jeridi, A., Kang, Y. P., Kagan, V. E., Konrad, D. B., Kotschi, S., Lei, P., Le Tertre, M., Lev, S., Liang, D., Linkermann, A., Lohr, C., Lorenz, S., Luedde, T., Methner, A., Michalke, B., Milton, A. V., Min, J., Mishima, E., Muller, S., Motohashi, H., Muckenthaler, M. U., Murakami, S., Olzmann, J. A., Pagnussat, G., Pan, Z., Papagiannakopoulos, T., Pedrera Puentes, L., Pratt, D. A., Proneth, B., Ramsauer, L., Rodriguez, R., Saito, Y., Schmidt, F., Schmitt, C., Schulze, A., Schwab, A., Schwantes, A., Soula, M., Spitzlberger, B., Stockwell, B. R., Thewes, L., Thorn-Seshold, O., Toyokuni, S., Tonnus, W., Trumpp, A., Vandenabeele, P., Vanden Berghe, T., Venkataramani, V., Vogel, F. C. E., von Karstedt, S., Wang, F., Westermann, F., Wientjens, C., Wilhelm, C., Wolk, M., Wu, K., Yang, X., Yu, F., Zou, Y., and Conrad, M. (2024) Ferroptosis in health and disease, Redox Biol., 75, 103211, https://doi.org/10.1016/j.redox.2024.103211.
  23. Stockwell, B. R. (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications, Cell, 185, 2401-2421, https://doi.org/10.1016/j.cell.2022.06.003.
  24. Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., and Stockwell, B. R. (2014) Regulation of ferroptotic cancer cell death by GPX4, Cell, 156, 317-331, https://doi.org/10.1016/j.cell.2013.12.010.
  25. Lyamzaev, K. G., Panteleeva, A. A., Simonyan, R. A., Avetisyan, A. V., and Chernyak, B. V. (2023) Mitochondrial lipid peroxidation is responsible for ferroptosis, Cells, 12, 611, https://doi.org/10.3390/cells12040611.
  26. Huan, H., Lyamzaev, K. G., Panteleeva, A. A., and Chernyak, B. V. (2024) Mitochondrial lipid peroxidation is necessary but not sufficient for induction of ferroptosis, Front. Cell Dev. Biol., 12, 1452824, https://doi.org/10.3389/fcell.2024.1452824.
  27. Lyamzaev, K. G., Huan, H., Panteleeva, A. A., Simonyan, R. A., Avetisyan, A. V., and Chernyak, B. V. (2024) Exogenous iron induces mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis in H9c2 cardiomyocytes, Biomolecules, 14, 730, https://doi.org/10.3390/biom14060730.
  28. Lyamzaev, K. G., Panteleeva, A. A., Simonyan, R. A., Avetisyan, A. V., and Chernyak, B. V. (2023) The critical role of mitochondrial lipid peroxidation in ferroptosis: insights from recent studies, Biophys. Rev., 15, 875-885, https://doi.org/10.1007/s12551-023-01126-w.
  29. Pap, E. H., Drummen, G. P., Winter, V. J., Kooij, T. W., Rijken, P., Wirtz, K. W., Op den Kamp, J. A., Hage, W. J., and Post, J. A. (1999) Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY(581/591), FEBS Lett., 453, 278-282, https://doi.org/10.1016/S0014-5793(99)00696-1.
  30. Malavolta, M., Giacconi, R., Piacenza, F., Strizzi, S., Cardelli, M., Bigossi, G., Marcozzi, S., Tiano, L., Marcheggiani, F., Matacchione, G., Giuliani, A., Olivieri, F., Crivellari, I., Beltrami, A. P., Serra, A., Demaria, M., and Provinciali, M. (2022) Simple detection of unstained live senescent cells with imaging flow cytometry, Cells, 11, 2506, https://doi.org/10.3390/cells11162506.
  31. Chio, K. S., Reiss, U., Fletcher, B., and Tappel, A. L. (1969) Peroxidation of subcellular organelles: formation of lipofuscinlike fluorescent pigments, Science, 166, 1535-1536, https://doi.org/10.1126/science.166.3912.1535.
  32. Pavshintsev, V. V., Podshivalova, L. S., Frolova, O. Y., Belopolskaya, M. V., Averina, O. A., Kushnir, E. A., Marmiy, N. V., and Lovat, M. L. (2017) Effects of mitochondrial antioxidant SkQ1 on biochemical and behavioral parameters in a Parkinsonism model in mice, Biochemistry (Moscow), 82, 1513-1520, https://doi.org/10.1134/S0006297917120100.
  33. Konig, J., Ott, C., Hugo, M., Jung, T., Bulteau, A. L., Grune, T., and Hohn, A. (2017) Mitochondrial contribution to lipofuscin formation, Redox Biol., 11, 673-681, https://doi.org/10.1016/j.redox.2017.01.017.
  34. Picca, A., Faitg, J., Auwerx, J., Ferrucci, L., and D’Amico, D. (2023) Mitophagy in human health, ageing and disease, Nat. Metab., 5, 2047-2061, https://doi.org/10.1038/s42255-023-00930-8.
  35. Pollreisz, A., Messinger, J. D., Sloan, K. R., Mittermueller, T. J., Weinhandl, A. S., Benson, E. K., Kidd, G. J., Schmidt-Erfurth, U., and Curcio, C. A. (2018) Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy, Exp. Eye Res., 166, 131-139, https://doi.org/10.1016/j.exer.2017.10.018.
  36. Huang, D., Heath Jeffery, R. C., Aung-Htut, M. T., McLenachan, S., Fletcher, S., Wilton, S. D., and Chen, F. K. (2022) Stargardt disease and progress in therapeutic strategies, Ophthalmic Genet., 43, 1-26, https://doi.org/10.1080/13816810.2021.1966053.
  37. Stojanovic, A., Roher, A. E., and Ball, M. J. (1994) Quantitative analysis of lipofuscin and neurofibrillary tangles in the hippocampal neurons of Alzheimer disease brains, Dementia, 5, 229-233, https://doi.org/10.1159/000106728.
  38. Ulfig, N., Braak, E., and Braak, H. (1989) Changes within the basal nucleus in Parkinson’s disease, Prog. Clin. Biol. Res., 317, 493-500.
  39. Moreno-Garcia, A., Kun, A., Calero, O., Medina, M., and Calero, M. (2018) An overview of the role of lipofuscin in age-related neurodegeneration, Front. Neurosci., 12, 464, https://doi.org/10.3389/fnins.2018.00464.
  40. Fang, Y., Taubitz, T., Tschulakow, A. V., Heiduschka, P., Szewczyk, G., Burnet, M., Peters, T., Biesemeier, A., Sarna, T., Schraermeyer, U., and Julien-Schraermeyer, S. (2022) Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species, Free Radic. Biol. Med., 182, 132-149, https://doi.org/10.1016/j.freeradbiomed.2022.02.025.
  41. Kaarniranta, K., Uusitalo, H., Blasiak, J., Felszeghy, S., Kannan, R., Kauppinen, A., Salminen, A., Sinha, D., and Ferrington, D. (2020) Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration, Prog. Retin. Eye Res., 79, 100858, https://doi.org/10.1016/j.preteyeres.2020.100858.
  42. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., Fursova, A. Z., and Kolosova, N. G. (2014) The mitochondria-targeted antioxidant SkQ1 restores alphaB-crystallin expression and protects against AMD-like retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, https://doi.org/10.4161/15384101.2014.958393.
  43. Novikova, Y. P., Gancharova, O. S., Eichler, O. V., Philippov, P. P., and Grigoryan, E. N. (2014) Preventive and therapeutic effects of SkQ1-containing Visomitin eye drops against light-induced retinal degeneration, Biochemistry (Moscow), 79, 1101-1110, https://doi.org/10.1134/S0006297914100113.
  44. Oh, M., Yeom, J., Schraermeyer, U., Julien-Schraermeyer, S., and Lim, Y. H. (2022) Remofuscin induces xenobiotic detoxification via a lysosome-to-nucleus signaling pathway to extend the Caenorhabditis elegans lifespan, Sci. Rep., 12, 7161, https://doi.org/10.1038/s41598-022-11325-2.
  45. Braak, E., Sandmann-Keil, D., Rub, U., Gai, W. P., de Vos, R. A., Steur, E. N., Arai, K., and Braak, H. (2001) alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei, Acta Neuropathol., 101, 195-201, https://doi.org/10.1007/s004010000247.
  46. Klemmensen, M. M., Borrowman, S. H., Pearce, C., Pyles, B., and Chandra, B. (2024) Mitochondrial dysfunction in neurodegenerative disorders, Neurotherapeutics, 21, e00292, https://doi.org/10.1016/j.neurot.2023.10.002.
  47. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimers Dis., 38, 681-694, https://doi.org/10.3233/JAD-131034.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).