EXAMINATION OF THE REACTION OF CYTOCHROME bd-I OF Escherichia coli IN THE FULLY REDUCED STATE WITH CYANIDE USING ABSORPTION AND CIRCULAR DICHROISM SPECTROSCOPY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have previously begun to investigate the reaction of the isolated solubilized dithionite-reduced cytochrome bd-I of Escherichia coli with cyanide [Borisov and Arutyunyan (2024) J. Inorg. Biochem., 259, 112653]. The present work is a continuation of this study. The following new results were obtained using absorption and CD spectroscopy. 1) The membrane form of the fully reduced (FR) enzyme is also capable of binding cyanide. The apparent dissociation constant and second-order rate constant values are 81.1 ± 7.8 mM KCN and 0.11 ± 0.01 M-1·s-1, respectively. This contradicts the data of other researchers according to which the bd-I oxidase, located in native membranes, in FR-state does not bind cyanide. 2) CO added to the cyano adduct of both membrane and isolated solubilized forms of FR-cytochrome bd-I displaces cyanide, resulting in the formation of a complex of the enzyme with CO. This indicates the reversibility of cyanide binding to the protein. To saturate the oxidase binding site with CO in the presence of 100 mM KCN, much more CO is required than in the case of addition of CO to the enzyme that was not pre-treated with cyanide. CO and cyanide compete with each other for binding to the same site in the oxidase — heme d2+, and CO, being a stronger ligand, wins the competition with cyanide. 3) The effect of cyanide on the optical activity of FR-cytochrome bd-I was studied. The CD spectra of FR-enzyme obtained before and after cyanide treatment indicate that the formation of the cyano adduct of heme d2+ leads to a significant weakening of the excitonic interactions between heme d2+ and heme b5952+. Schemes of interaction of cyanide and CO in the presence of excess cyanide with the active center of FR-enzyme are proposed.

About the authors

V. B Borisov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

Email: bor@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

A. M Arutyunyan

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia

References

  1. Poole, R. K., and Cook, G. M. (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol., 43, 165-224, https://doi.org/10.1016/S0065-2911(00)43005-5.
  2. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, https://doi.org/10.1016/j.bbabio.2011.06.016.
  3. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, https://doi.org/10.1134/S0006297919110130.
  4. Wikstrom, M., Morgan, J. E., and Verkhovsky, M. I. (1997) Proton and electrical charge translocation by cytochrome c-oxidase, Biochim. Biophys. Acta, 1318, 299-306, https://doi.org/10.1016/S0005-2728(96)00152-1.
  5. Bertsova, Y. V., Bogachev, A. V., and Skulachev, V. P. (1997) Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii, FEBS Lett., 414, 369-372, https://doi.org/10.1016/S0014-5793(97)01047-8.
  6. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, https://doi.org/10.1073/pnas.94.17.9085.
  7. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, https://doi.org/10.1021/bi001165n.
  8. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, https://doi.org/10.1073/pnas.0405683102.
  9. Zharova, T. V., Grivennikova, V. G., and Borisov, V. B. (2023) F1·Fo ATP synthase/ATPase: contemporary view on unidirectional catalysis, Int. J. Mol. Sci., 24, 5417, https://doi.org/10.3390/ijms24065417.
  10. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.
  11. Kaila, V. R. I., and Wikstrom, M. (2021) Architecture of bacterial respiratory chains, Nat. Rev. Microbiol., 19, 319-330, https://doi.org/10.1038/s41579-020-00486-4.
  12. Siletsky, S. A., and Borisov, V. B. (2021) Proton pumping and non-pumping terminal respiratory oxidases: active sites intermediates of these molecular machines and their derivatives, Int. J. Mol. Sci., 22, 10852, https://doi.org/10.3390/ijms221910852.
  13. Murali, R., Gennis, R. B., and Hemp, J. (2021) Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA’ in Archaea, ISME J., 15, 3534-3548, https://doi.org/10.1038/s41396-021-01019-4.
  14. Borisov, V. B., Giardina, G., Pistoia, G., and Forte, E. (2025) Cytochrome bd-type oxidases and environmental stressors in microbial physiology, Adv. Microb. Physiol., 86, 199-255, https://doi.org/10.1016/bs.ampbs.2024.05.001.
  15. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., Giuffre, A., and Poole, R. K. (2021) Bacterial oxidases of the cytochrome bd family: redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., 34, 1280-1318, https://doi.org/10.1089/ars.2020.8039.
  16. Van der Velden, T. T., Kayastha, K., Waterham, C. Y. J., Brunle, S., and Jeuken, L. J. C. (2025) Menaquinone-specific turnover by Mycobacterium tuberculosis cytochrome bd is redox regulated by the Q-loop disulfide bond, J. Biol. Chem., 301, 108094, https://doi.org/10.1016/j.jbc.2024.108094.
  17. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, https://doi.org/10.1021/bi00230a019.
  18. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, https://doi.org/10.1074/jbc.M705562200.
  19. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, https://doi.org/10.1021/bi800435a.
  20. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, https://doi.org/10.1073/pnas.1108217108.
  21. Borisov, V. B. (2023) Generation of membrane potential by cytochrome bd, Biochemistry (Moscow), 88, 1504-1512, https://doi.org/10.1134/S0006297923100073.
  22. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.
  23. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, https://doi.org/10.1016/j.febslet.2011.07.035.
  24. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, https://doi.org/10.1016/j.bbabio.2014.01.016.
  25. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, https://doi.org/10.1134/S0006297915050077.
  26. Borisov, V. B., and Forte, E. (2022) Bioenergetics and reactive nitrogen species in bacteria, Int. J. Mol. Sci., 23, 7321, https://doi.org/10.3390/ijms23137321.
  27. Borisov, V. B., Nastasi, M. R., and Forte, E. (2023) Cytochrome bd as antioxidant redox enzyme, Mol. Biol. (Mosk), 57, 1077-1084, https://doi.org/10.1134/S0026893323060031.
  28. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, https://doi.org/10.1016/j.febslet.2004.09.013.
  29. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, https://doi.org/10.1016/j.febslet.2006.07.072.
  30. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, https://doi.org/10.1016/j.bbrc.2007.01.118.
  31. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, https://doi.org/10.1038/nchembio.135.
  32. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, https://doi.org/10.1016/j.jinorgbio.2009.06.002.
  33. Shepherd, M., Achard, M. E., Idris, A., Totsika, M., Phan, M. D., Peters, K. M., Sarkar, S., Ribeiro, C. A., Holyoake, L. V., Ladakis, D., Ulett, G. C., Sweet, M. J., Poole, R. K., McEwan, A. G., and Schembri, M. A. (2016) The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection, Sci. Rep., 6, 35285, https://doi.org/10.1038/srep35285.
  34. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, https://doi.org/10.1016/j.bbabio.2014.10.006.
  35. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Esche­richia coli, Biochemistry (Moscow), 75, 428-436, https://doi.org/10.1134/S000629791004005X.
  36. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, https://doi.org/10.1016/j.febslet.2013.05.047.
  37. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, mBio, 4, e01006-13, https://doi.org/10.1128/mBio.01006-13.
  38. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, https://doi.org/10.1038/srep27631.
  39. Borisov, V. B., Siletsky, S. A., Nastasi, M. R., and Forte, E. (2021) ROS defense systems and terminal oxidases in bacteria, Antioxidants (Basel), 10, 839, https://doi.org/10.3390/antiox10060839.
  40. Forte, E., Nastasi, M. R., and Borisov, V. B. (2022) Preparations of terminal oxidase cytochrome bd-II isolated from Escherichia coli reveal significant hydrogen peroxide scavenging activity, Biochemistry (Moscow), 87, 720-730, https://doi.org/10.1134/S0006297922080041.
  41. Nastasi, M. R., Borisov, V. B., and Forte, E. (2023) The terminal oxidase cytochrome bd-I confers carbon monoxide resistance to Escherichia coli cells, J. Inorg. Biochem., 247, 112341, https://doi.org/10.1016/j.jinorgbio.2023.112341.
  42. Nastasi, M. R., Borisov, V. B., and Forte, E. (2024) Membrane-bound redox enzyme cytochrome bd-I promotes carbon monoxide-resistant Escherichia coli growth and respiration, Int. J. Mol. Sci., 25, 1277, https://doi.org/10.3390/ijms25021277.
  43. Borisov, V. B., and Forte, E. (2025) Carbon monoxide and prokaryotic energy metabolism, Int. J. Mol. Sci., 26, 2809, https://doi.org/10.3390/ijms26062809.
  44. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, https://doi.org/10.1038/srep23788.
  45. Borisov, V. B., and Forte, E. (2021) Terminal oxidase cytochrome bd protects bacteria against hydrogen sulfide toxicity, Biochemistry (Moscow), 86, 22-32, https://doi.org/10.1134/S000629792101003X.
  46. Borisov, V. B., and Forte, E. (2021) Impact of hydrogen sulfide on mitochondrial and bacterial bioenergetics, Int. J. Mol. Sci., 22, 12688, https://doi.org/10.3390/ijms222312688.
  47. Forte, E., Siletsky, S. A., and Borisov, V. B. (2021) In Escherichia coli ammonia inhibits cytochrome bo3 but activates cytochrome bd-I, Antioxidants (Basel), 10, 13, https://doi.org/10.3390/antiox10010013.
  48. Kita, K., Konishi, K., and Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems, J. Biol. Chem., 259, 3375-3381, https://doi.org/10.1016/S0021-9258(17)43305-9.
  49. Lu, P., Heineke, M. H., Koul, A., Andries, K., Cook, G. M., Lill, H., van Spanning, R., and Bald, D. (2015) The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress, Sci. Rep., 5, 10333, https://doi.org/10.1038/srep10333.
  50. Seregina, T. A., Lobanov, K. V., Shakulov, R. S., and Mironov, A. S. (2022) Inactivation of terminal oxidase bd-I leads to supersensitivity of E. coli to quinolone and beta-lactam antibiotics, Mol. Biol. (Mosk), 56, 619-627, https://doi.org/10.1134/S0026893322040100.
  51. Friedrich, T., Wohlwend, D., and Borisov, V. B. (2022) Recent advances in structural studies of cytochrome bd and its potential application as a drug target, Int. J. Mol. Sci., 23, 3166, https://doi.org/10.3390/ijms23063166.
  52. Henry, S. A., Webster, C. M., Shaw, L. N., Torres, N. J., Jobson, M. E., Totzke, B. C., Jackson, J. K., McGreig, J. E., Wass, M. N., Robinson, G. K., and Shepherd, M. (2024) Steroid drugs inhibit bacterial respiratory oxidases and are lethal toward methicillin-resistant Staphylococcus aureus, J. Infect. Dis., 230, e149-e158, https://doi.org/10.1093/infdis/jiad540.
  53. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, https://doi.org/10.1128/ecosalplus.ESP-0012-2015.
  54. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.
  55. D’mello, R., Hill, S., and Poole, R. K. (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding haems: implicaitons for regulation of activity in vivo by oxygen inihibition, Microbiology, 142, 755-763, https://doi.org/10.1099/00221287-142-4-755.
  56. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, https://doi.org/10.1016/j.febslet.2005.07.011.
  57. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., Nikolaev, A., Meier-Credo, J., Melin, F., Miyoshi, H., Gennis, R. B., Sakamoto, J., Langer, J. D., Hellwig, P., Kuhlbrandt, W., and Michel, H. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, https://doi.org/10.1126/science.aay0967.
  58. Theßeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., Muller, R., Bottcher, B., and Friedrich, T. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, https://doi.org/10.1038/s41467-019-13122-4.
  59. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, https://doi.org/10.1016/j.febslet.2008.09.038.
  60. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, https://doi.org/10.1016/j.bbabio.2011.02.007.
  61. Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830-8838, https://doi.org/10.1074/jbc.M111.333542.
  62. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, https://doi.org/10.1073/pnas.90.12.5863.
  63. Muntyan, M. S., Bloch, D. A., Drachev, L. A., and Skulachev, V. P. (1993) Kinetics of CO binding to putative Na+-motive oxidases of the o-type from Bacillus FTU and of the d-type from Escherichia coli, FEBS Lett., 327, 347-350, https://doi.org/10.1016/0014-5793(93)81018-u.
  64. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, https://doi.org/10.1074/jbc.270.48.28565.
  65. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, https://doi.org/10.1021/bi981908t.
  66. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, https://doi.org/10.1073/pnas.030528197.
  67. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, https://doi.org/10.1074/jbc.M011542200.
  68. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, https://doi.org/10.1021/bi0158019.
  69. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 Å, Biochemistry, 47, 1752-1759, https://doi.org/10.1021/bi701884g.
  70. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, https://doi.org/10.1134/S0006297908010021.
  71. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, https://doi.org/10.1016/j.bbabio.2009.05.003.
  72. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, https://doi.org/10.1016/j.bbabio.2010.05.010.
  73. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, https://doi.org/10.1016/j.jinorgbio.2012.09.016.
  74. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, https://doi.org/10.1134/S000629791711013X.
  75. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, https://doi.org/10.1371/journal.pone.0095617.
  76. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, https://doi.org/10.1371/journal.pone.0155186.
  77. Anand, A., Falquet, L., Abou-Mansour, E., L’Haridon, F., Keel, C., and Weisskopf, L. (2023) Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas, mBio, 14, e0085723, https://doi.org/10.1128/mbio.00857-23.
  78. Borisov, V. B., and Arutyunyan, A. M. (2024) The fully reduced terminal oxidase bd-I isolated from Escherichia coli binds cyanide, J. Inorg. Biochem., 259, 112653, https://doi.org/10.1016/j.jinorgbio.2024.112653.
  79. Mitchell, R., Moody, A. J., and Rich, P. R. (1995) Cyanide and carbon monoxide binding to the reduced form of cytochrome bo from Escherichia coli, Biochemistry, 34, 7576-7585, https://doi.org/10.1021/bi00023a003.
  80. Pudek, M. R., and Bragg, P. D. (1974) Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli, Arch. Biochem. Biophys., 164, 682-693, https://doi.org/10.1016/0003-9861(74)90081-2.
  81. Corradi, V., Sejdiu, B. I., Mesa-Galloso, H., Abdizadeh, H., Noskov, S. Y., Marrink, S. J., and Tieleman, D. P. (2019) Emerging diversity in lipid-protein interactions, Chem. Rev., 119, 5775-5848, https://doi.org/10.1021/acs.chemrev.8b00451.
  82. Cournia, Z., Allen, T. W., Andricioaei, I., Antonny, B., Baum, D., Brannigan, G., Buchete, N. V., Deckman, J. T., Delemotte, L., Del Val, C., Friedman, R., Gkeka, P., Hege, H. C., Henin, J., Kasimova, M. A., Kolocouris, A., Klein, M. L., Khalid, S., Lemieux, M. J., Lindow, N., et al. (2015) Membrane protein structure, function, and dynamics: a perspective from experiments and theory, J. Membr. Biol., 248, 611-640, https://doi.org/10.1007/s00232-015-9802-0.
  83. Andreev, I. M., and Konstantinov, A. A. (1983) Reaction of oxidized cytochrome oxidase with cyanide. Effects of pH, cytochrome c and membrane environment [in Russian], Bioorg. Khim., 9, 216-227.
  84. Borisov, V. B. (2020) Effect of membrane environment on ligand-binding properties of the terminal oxidase cytochrome bd-I from Escherichia coli, Biochemistry (Moscow), 85, 1603-1612, https://doi.org/10.1134/S0006297920120123.
  85. Azarkina, N. V., Borisov, V. B., Oleynikov, I. P., Sudakov, R. V., and Vygodina, T. V. (2023) Interaction of terminal oxidases with amphipathic molecules, Int. J. Mol. Sci., 24, 6428, https://doi.org/10.3390/ijms24076428.
  86. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenerg., 1860, 148088, https://doi.org/10.1016/j.bbabio.2019.148088.
  87. Wood, P. M. (1984) Bacterial proteins with CO-binding bor c-type haem. Functions and absorption spectroscopy, Biochem. Biophys. Acta, 768, 293-317, https://doi.org/10.1016/0304-4173(84)90020-x.
  88. Lorence, R. M., Koland, J. G., and Gennis, R. B. (1986) Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry, 25, 2314-2321, https://doi.org/10.1021/bi00357a003.
  89. Junemann, S., and Wrigglesworth, J. M. (1995) Cytochrome bd oxidase from Azotobacter vinelandii. Purification and quantitation of ligand binding to the oxygen reduction site, J. Biol. Chem., 270, 16213-16220, https://doi.org/10.1074/jbc.270.27.16213.
  90. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-­optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, https://doi.org/10.1016/j.bbabio.2012.06.009.
  91. Antonini, E., Brunori, M., Greenwood, C., Malmstrom, B. G., and Rotilio, G. C. (1971) The interaction of cyanide with cytochrome oxidase, Eur. J. Biochem., 23, 396-400, https://doi.org/10.1111/j.1432-1033.1971.tb01633.x.
  92. Van Buuren, K. J., Nicholis, P., and van Gelder, B. F. (1972) Biochemical and biophysical studies on cytochrome aa3. VI. Reaction of cyanide with oxidized and reduced enzyme, Biochim. Biophys. Acta, 256, 258-276, https://doi.org/10.1016/0005-2728(72)90057-6.
  93. Jones, M. G., Bickar, D., Wilson, M. T., Brunori, M., Colosimo, A., and Sarti, P. (1984) A re-examination of the reactions of cyanide with cytochrome c oxidase, Biochem. J., 220, 57-66, https://doi.org/10.1042/bj2200057.
  94. Hill, B. C., and Marmor, S. (1991) Photochemical and ligand-exchange properties of the cyanide complex of fully reduced cytochrome c oxidase, Biochem. J., 279, 355-360, https://doi.org/10.1042/bj2790355.
  95. Phelps, C., Antonini, E., and Brunori, M. (1971) The binding of cyanide to ferroperoxidase, Biochem. J., 122, 79-87, https://doi.org/10.1042/bj1220079.
  96. Meunier, B., and Rich, P. R. (1997) Photolysis of the cyanide adduct of ferrous horseradish peroxidase, Biochim. Biophys. Acta, 1318, 235-245, https://doi.org/10.1016/S0005-2728(96)00140-5.
  97. Keilin, D., and Hartree, E. F. (1955) Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation, Biochem. J., 61, 153-171, https://doi.org/10.1042/bj0610153.
  98. Brunori, M., Antonini, G., Castagnola, M., and Bellelli, A. (1992) Cooperative cyanide dissociation from ferrous hemoglobin, J. Biol. Chem., 267, 2258-2263, https://doi.org/10.1016/S0021-9258(18)45871-1.
  99. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.
  100. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.
  101. Myer, Y. P. (1985) Circular dichroism studies of electron transfer components, Current Topics in Bioenergetics, 14, 149-188, https://doi.org/10.1016/B978-0-12-152514-9.50012-5.
  102. Palmer, G., and Esposti, M. D. (1994) Application of exciton coupling theory to the structure of mitochondrial cytochrome b, Biochemistry, 33, 176-185, https://doi.org/10.1021/bi00167a023.
  103. Sun, J., Kahlow, M. A., Kaysser, T. M., Osborne, J. P., Hill, J. J., Rohlfs, R. J., Hille, R., Gennis, R. B., and Loehr, T. M. (1996) Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase, Biochemistry, 35, 2403-2412, https://doi.org/10.1021/bi9518252.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).