ANTIBIOTICS AND CELLULAR SENESCENCE: AN UNEXPLORED TERRITORY
- Authors: Zinovkin R.A1,2, Kondratenko N.D1,2
-
Affiliations:
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
- Issue: Vol 90, No 12 (2025)
- Pages: 1981-1996
- Section: Articles
- URL: https://ogarev-online.ru/0320-9725/article/view/376119
- DOI: https://doi.org/10.7868/S3034529425120056
- ID: 376119
Cite item
Abstract
Antibiotics are certainly the most important agents in the fight against human and animal bacterial infections. The widespread use of antibiotics has a positive impact on the treatment of infectious diseases but may be accompanied by serious side effects. The clinical aspects of these side effects are well understood, but the nonspecific molecular targets are not fully recognized. It is generally known that many antibiotics can damage mitochondria, intracellular organelles responsible for aerobic metabolism as well as regulating a number of important processes, including cellular redox balance and inflammatory responses. Mitochondrial dysfunction commonly leads to the development of oxidative stress and inflammation, known stimuli of cellular senescence. On the other hand, the same stimuli can induce death of senescent cells. Thus, mitotoxic antibiotics may influence both the cellular senescence process and the elimination of senescent cells. The effect of antitumor antibiotics on the induction of cell aging has been studied in detail, but the effect of antibacterial antibiotics on this process is still essentially unknown. This review aims to draw researchers' attention to the possibility of accelerated cellular aging induced by common antibacterial antibiotics and to discuss the potential mechanisms behind this phenomenon.
About the authors
R. A Zinovkin
A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
Email: roman.zinovkin@gmail.com
Moscow, Russia; Moscow, Russia
N. D Kondratenko
A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- Cunha, B. A. (2001) Antibiotic side effects, Med. Clin. North Am., 85, 149-185, https://doi.org/10.1016/s0025-7125(05)70309-6.
- Suárez-Rivero, J. M., Pastor-Maldonado, C. J., Povea-Cabello, S., Álvarez-Córdoba, M., Villalón-García, I., Talaverón-Rey, M., Suárez-Carrillo, A., Munuera-Cabeza, M., and Sánchez-Alcázar, J. A. (2021) Mitochondria and antibiotics: for good or for evil? Biomolecules, 11, 1050, https://doi.org/10.3390/biom11071050.
- Singh, R., Sripada, L., and Singh, R. (2014) Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell, Mitochondrion, 16, 50-54, https://doi.org/10.1016/j.mito.2013.10.005.
- Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, https://doi.org/10.1038/nrm2233.
- Aliouat-Denis, C.-M., Dendouga, N., Van den Wyngaert, I., Goehlmann, H., Steller, U., van de Weyer, I., van Slycken, N., Andries, L., Kass, S., Luyten, W., Janicot, M., and Vialard, J. E. (2005) p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2, Mol. Cancer Res., 3, 627-634, https://doi.org/10.1158/1541-7786.MCR-05-0121.
- Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F., and Giordano, A. (2020) Role of p53 in the regulation of cellular senescence, Biomolecules, 10, 420, https://doi.org/10.3390/biom10030420.
- Borodkina, A. V., Deryabin, P. I., Giukova, A. A., and Nikolsky, N. N. (2018) “Social life” of senescent cells: what is SASP and why study it? Acta Naturae, 10, 4-14, https://doi.org/10.32607/20758251-2018-10-1-4-14.
- Muñoz-Espín, D., and Serrano, M. (2014) Cellular senescence: from physiology to pathology, Nat. Rev. Mol. Cell Biol., 15, 482-496, https://doi.org/10.1038/nrm3823.
- Campisi, J. (1997) The biology of replicative senescence, Eur. J. Cancer, 33, 703-709, https://doi.org/10.1016/S0959-8049(96)00058-5.
- Kumari, R., and Jat, P. (2021) Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype, Front. Cell Dev. Biol., 9, 645593, https://doi.org/10.3389/fcell.2021.645593.
- Di Micco, R., Krizhanovsky, V., Baker, D., and d’Adda di Fagagna, F. (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities, Nat. Rev. Mol. Cell Biol., 22, 75-95, https://doi.org/10.1038/s41580-020-00314-w.
- Shmulevich, R., and Krizhanovsky, V. (2021) Cell senescence, DNA damage, and metabolism, Antioxid. Redox Signal., 34, 324-334, https://doi.org/10.1089/ars.2020.8043.
- Petrova, N. V., Velichko, A. K., Razin, S. V., and Kantidze, O. L. (2016) Small molecule compounds that induce cellular senescence, Aging Cell, 15, 999-1017, https://doi.org/10.1111/acel.12518.
- Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018) Hallmarks of cellular senescence, Trends Cell Biol., 28, 436-453, https://doi.org/10.1016/j.tcb.2018.02.001.
- Halawa, E. M., Fadel, M., Al-Rabia, M. W., Behairy, A., Nouh, N. A., Abdo, M., Olga, R., Fericean, L., Atwa, A. M., El-Nablaway, M., and Abdeen, A. (2023) Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance, Front. Pharmacol., 14, 1305294, https://doi.org/10.3389/fphar.2023.1305294.
- Hutchings, M. I., Truman, A. W., and Wilkinson, B. (2019) Antibiotics: past, present and future, Curr. Opin. Microbiol., 51, 72-80, https://doi.org/10.1016/j.mib.2019.10.008.
- Kapoor, G., Saigal, S., and Elongavan, A. (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians, J. Anaesthesiol. Clin. Pharmacol., 33, 300-305, https://doi.org/10.4103/joacp.JOACP_349_15.
- Ekinci, İ. B., Chłodowska, A., and Olejnik, M. (2023) Ionophore toxicity in animals: a review of clinical and molecular aspects, Int. J. Mol. Sci., 24, 1696, https://doi.org/10.3390/ijms24021696.
- Karamanolis, N. N., Kounatidis, D., Vallianou, N. G., Dimitriou, K., Tsaroucha, E., Tsioulos, G., Anastasiou, I. A., Mavrothalassitis, E., Karampela, I., and Dalamaga, M. (2024) Unraveling the anti-cancer mechanisms of antibiotics: current insights, controversies, and future perspectives, Antibiotics (Basel), 14, 9, https://doi.org/10.3390/antibiotics14010009.
- Riley, A. (2024) Anti-tumor antibiotics: a guide to targeted cancer therapy, J. Canc. Sci. Res., 9, 1-2, https://doi.org/10.35248/2576-1447.24.9.569.
- Rao, M. S., Gupta, R., Liguori, M. J., Hu, M., Huang, X., Mantena, S. R., Mittelstadt, S. W., Blomme, E. A. G., and van Vleet, T. R. (2019) Novel computational approach to predict off-target interactions for small molecules, Front. Big Data, 2, 25, https://doi.org/10.3389/fdata.2019.00025.
- Patangia, D. V., Anthony Ryan, C., Dempsey, E., Paul Ross, R., and Stanton, C. (2022) Impact of antibiotics on the human microbiome and consequences for host health, Microbiologyopen, 11, e1260, https://doi.org/10.1002/mbo3.1260.
- Gallagher, J. C., and MacDougall, C. (2022) Antibiotics Simplified, 5th Edn, Jones and Bartlett, Sudbury, MA.
- Nadanaciva, S., and Will, Y. (2011) Investigating mitochondrial dysfunction to increase drug safety in the pharmaceutical industry, Curr. Drug Targets, 12, 774-782, https://doi.org/10.2174/138945011795528985.
- D’Achille, G., and Morroni, G. (2023) Side effects of antibiotics and perturbations of mitochondria functions, Int. Rev. Cell Mol. Biol., 377, 121-139, https://doi.org/10.1016/bs.ircmb.2023.03.009.
- Theodosiou, A. A., Jones, C. E., Read, R. C., and Bogaert, D. (2023) Microbiotoxicity: antibiotic usage and its unintended harm to the microbiome, Curr. Opin. Infect. Dis., 36, 371-378, https://doi.org/10.1097/QCO.0000000000000945.
- Miller, M., and Singer, M. (2022) Do antibiotics cause mitochondrial and immune cell dysfunction? A literature review, J. Antimicrob. Chemother., 77, 1218-1227, https://doi.org/10.1093/jac/dkac025.
- Milosevic, T. V., Vertenoeil, G., Vainchenker, W., Tulkens, P. M., Constantinescu, S. N., and Van Bambeke, F. (2024) Oxazolidinone antibiotics impair ex vivo megakaryocyte differentiation from hematopoietic progenitor cells and their maturation into platelets, Antimicrob. Agents Chemother., 68, e0053324, https://doi.org/10.1128/aac.00533-24.
- Garrabou, G., Soriano, A., López, S., Guallar, J. P., Giralt, M., Villarroya, F., Martínez, J. A., Casademont, J., Cardellach, F., Mensa, J., and Miró, O. (2007) Reversible inhibition of mitochondrial protein synthesis during linezolid-related hyperlactatemia, Antimicrob. Agents Chemother., 51, 962-967, https://doi.org/10.1128/AAC.01190-06.
- Rucker, J. C., Hamilton, S. R., Bardenstein, D., Isada, C. M., and Lee, M. S. (2006) Linezolid-associated toxic optic neuropathy, Neurology, 66, 595-598, https://doi.org/10.1212/01.wnl.0000201313.24970.b8.
- Brandariz-Núñez, D., Hernández-Corredoira, V., Guarc-Prades, E., and García-Navarro, B. (2019) Optic neuropathy associated with linezolid: systematic review of cases, Farm. Hosp., 43, 61-65, https://doi.org/10.7399/fh.11133.
- Xiao, Y., Xiong, T., Meng, X., Yu, D., Xiao, Z., and Song, L. (2019) Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines, J. Biochem. Mol. Toxicol., 33, e22277, https://doi.org/10.1002/jbt.22277.
- Leiter, L. M., Thatte, H. S., Okafor, C., Marks, P. W., Golan, D. E., and Bridges, K. R. (1999) Chloramphenicol-induced mitochondrial dysfunction is associated with decreased transferrin receptor expression and ferritin synthesis in K562 cells and is unrelated to IRE-IRP interactions, J. Cell Physiol., 180, 334-344, https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<334::AID-JCP4>3.0.CO;2-Q.
- Nyamagoud, S. B., Swamy, A. H. V., Stanly, N., Tom, C., Hegadal, V., and Bhavya, D. B. (2025) Chloramphenicol-associated aplastic anemia: a review, BLDE Univ. J. Health Sci., 10, 16-23, https://doi.org/10.4103/bjhs.bjhs_112_23.
- Salimi, A., Eybagi, S., Seydi, E., Naserzadeh, P., Kazerouni, N. P., and Pourahmad, J. (2016) Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect, Xenobiotica, 46, 82-93, https://doi.org/10.3109/00498254.2015.1046975.
- Woodhead, J. L., Yang, K., Oldach, D., MacLauchlin, C., Fernandes, P., Watkins, P. B., Siler, S. Q., and Howell, B. A. (2019) Analyzing the mechanisms behind macrolide antibiotic-induced liver injury using quantitative systems toxicology modeling, Pharm. Res., 36, 48, https://doi.org/10.1007/s11095-019-2582-y.
- Guan, M.-X. (2011) Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity, Mitochondrion, 11, 237-245, https://doi.org/10.1016/j.mito.2010.10.006.
- Chen, Q., Cui, Y., Ding, G., Jia, Z., Zhang, Y., Zhang, A., and Huang, S. (2017) PEA3 protects against gentamicin nephrotoxicity: role of mitochondrial dysfunction, Am. J. Transl. Res., 9, 2153-2162.
- Morales, A. I., Detaille, D., Prieto, M., Puente, A., Briones, E., Arévalo, M., Leverve, X., López-Novoa, J. M., and El-Mir, M.-Y. (2010) Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway, Kidney Int., 77, 861-869, https://doi.org/10.1038/ki.2010.11.
- Pouzaud, F., Dutot, M., Martin, C., Debray, M., Warnet, J. M., and Rat, P. (2006) Age-dependent effects on redox status, oxidative stress, mitochondrial activity and toxicity induced by fluoroquinolones on primary cultures of rabbit tendon cells, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 143, 232-241, https://doi.org/10.1016/j.cbpc.2006.02.006.
- Lowes, D. A., Wallace, C., Murphy, M. P., Webster, N. R., and Galley, H. F. (2009) The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells, Free Radic. Res., 43, 323-328, https://doi.org/10.1080/10715760902736275.
- Li, Q., Peng, S., Sheng, Z., and Wang, Y. (2010) Ofloxacin induces oxidative damage to joint chondrocytes of juvenile rabbits: excessive production of reactive oxygen species, lipid peroxidation and DNA damage, Eur. J. Pharmacol., 626, 146-153, https://doi.org/10.1016/j.ejphar.2009.09.044.
- Salimiaghdam, N., Singh, L., Schneider, K., Chwa, M., Atilano, S. R., Nalbandian, A., Limb, G. A., and Kenney, M. C. (2022) Effects of fluoroquinolones and tetracyclines on mitochondria of human retinal MIO-M1 cells, Exp. Eye Res., 214, 108857, https://doi.org/10.1016/j.exer.2021.108857.
- Ge, T.-F., Law, P. Y. P., Wong, H. Y., and Ho, Y.-Y. (2007) Gatifloxacin affects GLUT1 gene expression and disturbs glucose homeostasis in vitro, Eur. J. Pharmacol., 573, 70-74, https://doi.org/10.1016/j.ejphar.2007.07.038.
- Koc, E. C., Burkhart, W., Blackburn, K., Moyer, M. B., Schlatzer, D. M., Moseley, A., and Spremulli, L. L. (2001) The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present, J. Biol. Chem., 276, 43958-43969, https://doi.org/10.1074/jbc.M106510200.
- De Vriese, A. S., Van Coster, R., Smet, J., Seneca, S., Lovering, A., van Haute, L. L., Vanopdenbosch, L. J., Martin, J.-J., Ceuterick-de Groote, C., Vandecasteele, S., and Boelaert, J. R. (2006) Linezolid-induced inhibition of mitochondrial protein synthesis, Clin. Infect. Dis., 42, 1111-1117, https://doi.org/10.1086/501356.
- Milosevic, T. V., Payen, V. L., Sonveaux, P., Muccioli, G. G., Tulkens, P. M., and Van Bambeke, F. (2018) Mitochondrial alterations (inhibition of mitochondrial protein expression, oxidative metabolism, and ultrastructure) induced by linezolid and tedizolid at clinically relevant concentrations in cultured human HL-60 promyelocytes and THP-1 monocytes, Antimicrob. Agents Chemother., 62, https://doi.org/10.1128/AAC.01599-17.
- Marks, J., Young, E., and Hafner, M. (2024) Determining the off-target activity of antibiotics and novel translation initiation sites in mitochondria, Biochem. Chem. Biol., 13, RP103699, https://doi.org/10.7554/eLife.103699.1.
- Li, C.-H., Cheng, Y.-W., Liao, P.-L., Yang, Y.-T., and Kang, J.-J. (2010) Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion, Toxicol. Sci., 116, 140-150, https://doi.org/10.1093/toxsci/kfq085.
- Li, C.-H., Tzeng, S.-L., Cheng, Y.-W., and Kang, J.-J. (2005) Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway, J. Biol. Chem., 280, 26193-26199, https://doi.org/10.1074/jbc.M501371200.
- Denslow, N. D., and O’Brien, T. W. (1978) Antibiotic susceptibility of the peptidyl transferase locus of bovine mitochondrial ribosomes, Eur. J. Biochem., 91, 441-448, https://doi.org/10.1111/j.1432-1033.1978.tb12696.x.
- Leach, K. L., Swaney, S. M., Colca, J. R., McDonald, W. G., Blinn, J. R., Thomasco, L. M., Gadwood, R. C., Shinabarger, D., Xiong, L., and Mankin, A. S. (2007) The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria, Mol. Cell, 26, 393-402, https://doi.org/10.1016/j.molcel.2007.04.005.
- Zhao, H., Li, R., Wang, Q., Yan, Q., Deng, J.-H., Han, D., Bai, Y., Young, W.-Y., and Guan, M.-X. (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family, Am. J. Hum. Genet., 74, 139-152, https://doi.org/10.1086/381133.
- Prezant, T. R., Agapian, J. V., Bohlman, M. C., Bu, X., Oztas, S., Qiu, W. Q., Arnos, K. S., Cortopassi, G. A., Jaber, L., Rotter, J. I., Shohat, M., and Fischel-Ghodsian, N. (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness, Nat. Genet., 4, 289-294, https://doi.org/10.1038/ng0793-289.
- Kokotas, H., Petersen, M. B., and Willems, P. J. (2007) Mitochondrial deafness, Clin. Genet., 71, 379-391, https://doi.org/10.1111/j.1399-0004.2007.00800.x.
- Davies, J., and Davis, B. D. (1968) Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics, J. Biol. Chem., 243, 3312-3316, https://doi.org/10.1016/s0021-9258(18)93308-9.
- Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E. G., Mottis, A., Jovaisaite, V., Frochaux, M. V., Quiros, P. M., Deplancke, B., Houtkooper, R. H., and Auwerx, J. (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research, Cell Rep., 10, 1681-1691, https://doi.org/10.1016/j.celrep.2015.02.034.
- Hangas, A., Aasumets, K., Kekäläinen, N. J., Paloheinä, M., Pohjoismäki, J. L., Gerhold, J. M., and Goffart, S. (2018) Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of topoisomerase 2, Nucleic Acids Res, 46, 9625-9636, https://doi.org/10.1093/nar/gky793.
- Jiang, T., Kustermann, S., Wu, X., Zihlmann, C., Zhang, M., Mao, Y., Wu, W., and Xie, J. (2023) Mitochondrial dysfunction is underlying fluoroquinolone toxicity: an integrated mitochondrial toxicity assessment, Mol. Cell Toxicol., 19, 333-342, https://doi.org/10.1007/s13273-022-00263-9.
- Reinhardt, T., El Harraoui, Y., Rothemann, A., Jauch, A. T., Müller-Deubert, S., Köllen, M. F., Risch, T., Jacobs, L. J., Müller, R., Traube, F. R., Docheva, D., Zahler, S., Riemer, J., Bach, N. C., and Sieber, S. A. (2025) Chemical proteomics reveals human off-targets of fluoroquinolone induced mitochondrial toxicity, Angew. Chem. Int. Ed., 64, e202421424, https://doi.org/10.1002/anie.202421424.
- Hou, P., Wang, S., Shao, Z., Tang, Y., Wang, W., Fang, L., Lin, B., Zhu, Y., Xu, R.-H., and Li, J. (2025) Off-target interactions of vancomycin with vascular wall involving elastin-induced self-assembly, Anal. Chem., 97, 7107-7117, https://doi.org/10.1021/acs.analchem.4c06259.
- Li, X., Li, H., Li, S., Zhu, F., Kim, D. J., Xie, H., Li, Y., Nadas, J., Oi, N., Zykova, T. A., Yu, D. H., Lee, M.-H., Kim, M. O., Wang, L., Ma, W., Lubet, R. A., Bode, A. M., Dong, Z., and Dong, Z. (2012) Ceftriaxone, an FDA-approved cephalosporin antibiotic, suppresses lung cancer growth by targeting Aurora B, Carcinogenesis, 33, 2548-2557, https://doi.org/10.1093/carcin/bgs283.
- McGowan, J. V., Chung, R., Maulik, A., Piotrowska, I., Walker, J. M., and Yellon, D. M. (2017) Anthracycline chemotherapy and cardiotoxicity, Cardiovasc. Drugs Ther., 31, 63-75, https://doi.org/10.1007/s10557-016-6711-0.
- Wallace, K. B., Sardão, V. A., and Oliveira, P. J. (2020) Mitochondrial determinants of doxorubicin-induced cardiomyopathy, Circ. Res., 126, 926-941, https://doi.org/10.1161/CIRCRESAHA.119.314681.
- Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L., Illiano, M., Quaini, F., Rossi, F., Berrino, L., Naviglio, S., and Urbanek, K. (2017) Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity, Oxid. Med. Cell Longev., 2017, 1521020, https://doi.org/10.1155/2017/1521020.
- Chelombitko, M. A., Morgunova, G. V., Strochkova, N. Y., Zinovkin, R. A., Pavlyuchenkova, A. N., Kondratenko, N. D., and Lyamzaev, K. G. (2023) Comparative analysis of cell senescence induced by the chemotherapeutic agents doxorubicin, cisplatin and arsenic trioxide in human myoblasts MB135, Adv. Gerontol., 13, 16-25, https://doi.org/10.1134/s2079057024600010.
- Bientinesi, E., Lulli, M., Becatti, M., Ristori, S., Margheri, F., and Monti, D. (2022) Doxorubicin-induced senescence in normal fibroblasts promotes in vitro tumour cell growth and invasiveness: the role of quercetin in modulating these processes, Mech. Ageing Dev., 206, 111689, https://doi.org/10.1016/j.mad.2022.111689.
- Sun, T., Zhang, L., Feng, J., Bao, L., Wang, J., Song, Z., Mao, Z., Li, J., and Hu, Z. (2022) Characterization of cellular senescence in doxorubicin-induced aging mice, Exp. Gerontol., 163, 111800, https://doi.org/10.1016/j.exger.2022.111800.
- Clayton, Z. S., Hutton, D. A., Mahoney, S. A., and Seals, D. R. (2021) Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging, Aging Cancer, 2, 45-69, https://doi.org/10.1002/aac2.12033.
- Hecht, S. M. (2000) Bleomycin: new perspectives on the mechanism of action, J. Nat. Prod., 63, 158-168, https://doi.org/10.1021/np990549f.
- Yao, Y.-X., Lu, X., Li, Z., Liao, H.-Y., Liu, Z.-B., Zhao, H., Wang, H., Xu, D.-X., and Tan, Z.-X. (2025) Mitochondrial dysfunction-associated cellular senescence is partially involved in bleomycin-induced pulmonary fibrosis in mice, Toxicol. Appl. Pharmacol., 504, 117524, https://doi.org/10.1016/j.taap.2025.117524.
- Aoshiba, K., Tsuji, T., and Nagai, A. (2003) Bleomycin induces cellular senescence in alveolar epithelial cells, Eur. Respir. J., 22, 436-443, https://doi.org/10.1183/09031936.03.00011903.
- Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M., Semba, S., Yamaguchi, K., and Nakamura, H. (2013) Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury, Exp. Toxicol. Pathol., 65, 1053-1062, https://doi.org/10.1016/j.etp.2013.04.001.
- Chen, P., Guo, H., Chen, J., and Fu, Y. (2016) The chemotherapeutic drug boanmycin induces cell senescence and senescence-associated secretory phenotype factors, thus acquiring the potential to remodel the tumor microenvironment, Anticancer Drugs, 27, 84-88, https://doi.org/10.1097/cad.0000000000000304.
- Gao, N., Shang, B., Zhang, X., Shen, C., Xu, R., Xu, H., Chen, R., and He, Q. (2011) Potent antitumor actions of the new antibiotic boningmycin through induction of apoptosis and cellular senescence, Anticancer Drugs, 22, 166-175, https://doi.org/10.1097/cad.0b013e3283409bee.
- Wu, H.-C., Rérolle, D., Berthier, C., Hleihel, R., Sakamoto, T., Quentin, S., Benhenda, S., Morganti, C., Wu, C., Conte, L., Rimsky, S., Sebert, M., Clappier, E., Souquere, S., Gachet, S., Soulier, J., Durand, S., Trowbridge, J. J., Bénit, P., et al. (2021) Actinomycin D targets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy, Cancer Discov., 11, 3198-3213, https://doi.org/10.1158/2159-8290.CD-21-0177.
- Minieri, V., Saviozzi, S., Gambarotta, G., Lo Iacono, M., Accomasso, L., Cibrario Rocchietti, E., Gallina, C., Turinetto, V., and Giachino, C. (2015) Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells, J. Cell. Mol. Med., 19, 734-743, https://doi.org/10.1111/jcmm.12387.
- Jin, C., Wu, S., Lu, X., Liu, Q., Zhang, L., Yang, J., Xi, Q., and Cai, Y. (2012) Conditioned medium from actinomycin D-treated apoptotic cells induces mitochondria-dependent apoptosis in bystander cells, Toxicol. Lett., 211, 45-53, https://doi.org/10.1016/j.toxlet.2012.02.020.
- Bizanek, R., McGuinness, B. F., Nakanishi, K., and Tomasz, M. (1992) Isolation and structure of an intrastrand cross-link adduct of mitomycin C and DNA, Biochemistry, 31, 3084-3091, https://doi.org/10.1021/bi00127a008.
- Pritsos, C. A., Briggs, L. A., and Gustafson, D. L. (1997) A new cellular target for mitomycin C: a case for mitochondrial DNA, Oncol. Res., 9, 333-337.
- Yan, C., Kong, D., Ge, D., Zhang, Y., Zhang, X., Su, C., and Cao, X. (2015) Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway, Cell Physiol. Biochem., 35, 1125-1136, https://doi.org/10.1159/000373938.
- Alili, L., Diekmann, J., Giesen, M., Holtkötter, O., and Brenneisen, P. (2014) A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse, Age (Dordr), 36, 9658, https://doi.org/10.1007/s11357-014-9658-8.
- Lin, L.-T., Chen, J.-T., Lu, D.-W., Tai, M.-C., Liang, C.-M., Chen, C.-L., Pao, S.-I., Hsu, C.-K., and Chen, Y.-H. (2020) Antifibrotic role of low-dose mitomycin-c-induced cellular senescence in trabeculectomy models, PLoS One, 15, e0234706, https://doi.org/10.1371/journal.pone.0234706.
- Al Dhaheri, Y., Attoub, S., Arafat, K., Abuqamar, S., Eid, A., Al Faresi, N., and Iratni, R. (2013) Salinomycin induces apoptosis and senescence in breast cancer: upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation, Biochim. Biophys. Acta, 1830, 3121-3135, https://doi.org/10.1016/j.bbagen.2013.01.010.
- Miyazaki, Y., Shibuya, M., Sugawara, H., Kawaguchi, O., and Hirsoe, C. (1974) Salinomycin, a new polyether antibiotic, J. Antibiot. (Tokyo), 27, 814-821, https://doi.org/10.7164/antibiotics.27.814.
- Huczynski, A. (2012) Salinomycin: a new cancer drug candidate, Chem. Biol. Drug Des., 79, 235-238, https://doi.org/10.1111/j.1747-0285.2011.01287.x.
- Managò, A., Leanza, L., Carraretto, L., Sassi, N., Grancara, S., Quintana-Cabrera, R., Trimarco, V., Toninello, A., Scorrano, L., Trentin, L., Semenzato, G., Gulbins, E., Zoratti, M., and Szabò, I. (2015) Early effects of the antineoplastic agent salinomycin on mitochondrial function, Cell Death Dis., 6, e1930, https://doi.org/10.1038/cddis.2015.263.
- He, Q. Y., Liang, Y. Y., Wang, D. S., and Li, D. D. (2002) Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells, Int. J. Oncol., 20, 261-266, https://doi.org/10.3892/ijo.20.2.261.
- Gao, R.-J., Liang, Y.-X., Li, D.-D., Zhang, H.-Y., and Zhen, Y.-S. (2007) Effect of lidamycin on telomerase activity in human hepatoma BEL-7402 cells, Biomed. Environ. Sci., 20, 189-197.
- Sha, M.-Q., Zhao, X.-L., Li, L., Li, L.-H., Li, Y., Dong, T.-G., Niu, W.-X., Jia, L.-J., Shao, R.-G., Zhen, Y.-S., and Wang, Z. (2016) EZH2 mediates lidamycin-induced cellular senescence through regulating p21 expression in human colon cancer cells, Cell Death Dis., 7, e2486, https://doi.org/10.1038/cddis.2016.383.
- Labay, E., Mauceri, H. J., Efimova, E. V., Flor, A. C., Sutton, H. G., Kron, S. J., and Weichselbaum, R. R. (2016) Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers, Oncotarget, 7, 33919-33933, https://doi.org/10.18632/oncotarget.8984.
- Lyamzaev, K. G., Zinovkin, R. A., and Chernyak, B. V. (2022) Extrusion of mitochondria: Garbage clearance or cell-cell communication signals? J. Cell Physiol., 237, 2345-2356, https://doi.org/10.1002/jcp.30711.
- Zinovkin, R. A., and Zamyatnin, A. A. (2019) Mitochondria-targeted drugs, Curr. Mol. Pharmacol., 12, 202-214, https://doi.org/10.2174/1874467212666181127151059.
- Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661-674, https://doi.org/10.18632/aging.100685.
- Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, https://doi.org/10.1152/physrev.00026.2013.
- Martini, H., and Passos, J. F. (2023) Cellular senescence: all roads lead to mitochondria, FEBS J., 290, 1186-1202, https://doi.org/10.1111/febs.16361.
- Nagiec, E. E., Wu, L., Swaney, S. M., Chosay, J. G., Ross, D. E., Brieland, J. K., and Leach, K. L. (2005) Oxazolidinones inhibit cellular proliferation via inhibition of mitochondrial protein synthesis, Antimicrob. Agents Chemother., 49, 3896-3902, https://doi.org/10.1128/AAC.49.9.3896-3902.2005.
- Naresh, A., Venkateswara Rao, M., Kotapalli, S. S., Ummanni, R., and Venkateswara Rao, B. (2014) Oxazolidinone derivatives: cytoxazone-linezolid hybrids induces apoptosis and senescence in DU145 prostate cancer cells, Eur. J. Med. Chem., 80, 295-307, https://doi.org/10.1016/j.ejmech.2014.04.062.
- Ramalho, E. A. V. F., Pitta, M. G. R., Neto, H. B. S., and Pitta, I. R. (2020) Does the oxazolidinone derivatives constitute a functional approach for cancer therapy? Clin. Cancer Drugs, 7, 95-106, https://doi.org/10.2174/2212697x07999200807210936.
- Kim, H. Y., Kim, K.-T., and Kim, S. D. (2012) Biochemical effects of veterinary antibiotics on proliferation and cell cycle arrest of human HEK293 cells, Bull. Environ. Contam. Toxicol., 89, 234-239, https://doi.org/10.1007/s00128-012-0695-7.
- Salunkhe, S., Mishra, S. V., Nair, J., Shah, S., Gardi, N., Thorat, R., Sarkar, D., Rajendra, J., Kaur, E., and Dutt, S. (2021) Nuclear localization of p65 reverses therapy-induced senescence, J. Cell Sci., 134, jcs253203, https://doi.org/10.1242/jcs.253203.
- Rad, A. N., and Grillari, J. (2024) Current senolytics: Mode of action, efficacy and limitations, and their future, Mech. Ageing Dev., 217, 111888, https://doi.org/10.1016/j.mad.2023.111888.
- Novais, E. J., Tran, V. A., Johnston, S. N., Darris, K. R., Roupas, A. J., Sessions, G. A., Shapiro, I. M., Diekman, B. O., and Risbud, M. V. (2021) Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice, Nat. Commun., 12, 5213, https://doi.org/10.1038/s41467-021-25453-2.
- Kirkland, J. L., and Tchkonia, T. (2020) Senolytic drugs: from discovery to translation, J. Intern. Med., 288, 518-536, https://doi.org/10.1111/joim.13141.
- Deryabin, P. I., Shatrova, A. N., and Borodkina, A. V. (2022) Targeting multiple homeostasis-maintaining systems by ionophore nigericin is a novel approach for senolysis, Int. J. Mol. Sci., 23, 14251, https://doi.org/10.3390/ijms232214251.
- Casagrande Raffi, G., Chen, J., Feng, X., Chen, Z., Lieftink, C., Deng, S., Mo, J., Zeng, C., Steur, M., Wang, J., Bleijerveld, O. B., Hoekman, L., van der Wel, N., Wang, F., Beijersbergen, R., Zheng, J., Bernards, R., and Wang, L. (2024) An antibiotic that mediates immune destruction of senescent cancer cells, Proc. Natl. Acad. Sci. USA, 121, e2417724121, https://doi.org/10.1073/pnas.2417724121.
- Ozsvari, B., Nuttall, J. R., Sotgia, F., and Lisanti, M. P. (2018) Azithromycin and Roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts, Aging (Albany NY), 10, 3294-3307, https://doi.org/10.18632/aging.101633.
- Sonehara, R., Nakamura, T., Takeda, T., Kaseki, S., Seki, T., Tanaka, H., Yabuki, A., Miyake, N., Muraoka, A., Osuka, S., Iwase, A., and Kajiyama, H. (2025) A novel senotherapeutic strategy with azithromycin for preventing endometriosis progression, Reprod. Biol. Endocrinol., 23, 47, https://doi.org/10.1186/s12958-025-01381-4.
- Xiaofei, Y., Tingting, L., Xuan, W., and Zhiyi, H. (2022) Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease, Front. Pharmacol., 13, 1043474, https://doi.org/10.3389/fphar.2022.1043474.
- Zhang, X., Dong, Y., Li, W.-C., Tang, B.-X., Li, J., and Zang, Y. (2021) Roxithromycin attenuates bleomycin-induced pulmonary fibrosis by targeting senescent cells, Acta Pharmacol. Sin., 42, 2058-2068, https://doi.org/10.1038/s41401-021-00618-3.
- Wang, Z., Lian, W., Chen, C., Dai, Q., Liu, Z., Liu, J., Zhang, Y., Zhou, M., and Wang, X. (2024) Network pharmacology and experimental verification revealing valnemulin alleviates DSS-induced ulcerative colitis by inhibiting intestinal senescence, Int. Immunopharmacol., 141, 112810, https://doi.org/10.1016/j.intimp.2024.112810.
- Wang, M., Zhang, J., Qiu, J., Ma, X., Xu, C., Wu, Q., Xing, S., Chen, X., and Liu, B. (2024) Doxycycline decelerates aging in progeria mice, Aging Cell, 23, e14188, https://doi.org/10.1111/acel.14188.
- Bai, S.-R., Zhao, Q., Jia, H.-J., He, F., and Wang, X.-B. (2024) Chloramphenicol alleviates 5-fluorouracil-induced cellular senescence through activation of autophagy, Can. J. Physiol. Pharmacol., 102, 661-671, https://doi.org/10.1139/cjpp-2023-0432.
- Karabicici, M., Alptekin, S., Fırtına Karagonlar, Z., and Erdal, E. (2021) Doxorubicin-induced senescence promotes stemness and tumorigenicity in EpCAM-/CD133nonstem cell population in hepatocellular carcinoma cell line, HuH-7, Mol. Oncol., 15, 2185-2202, https://doi.org/10.1002/1878-0261.12916.
- Kalghatgi, S., Spina, C. S., Costello, J. C., Liesa, M., Morones-Ramirez, J. R., Slomovic, S., Molina, A., Shirihai, O. S., and Collins, J. J. (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells, Sci. Transl. Med., 5, 192ra85, https://doi.org/10.1126/scitranslmed.3006055.
Supplementary files


