CLASSIFICATION OF MITOCHONDRIAL PROTONOPHORIC UNCOUPLERS AND THEIR MODIFICATIONS IN BIOLOGICAL ENVIRONMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review is devoted to an analysis of the diversity of mitochondrial uncouplers, a class of compounds that Vladimir Petrovich Skulachev paid primary attention to throughout his scientific career, from the foundations of bioenergetics and the proof of the validity of Mitchell's chemiosmotic theory to the development of the concept of mild uncoupling and its therapeutic role. The review puts forward for the first time the idea of classifying uncouplers according to the type of functional group that provides their protonophoric activity, i.e., the ability to transfer protons across the membrane, causing its depolarization and thus uncoupling the work of proton pumps in the electron transport chain and ATP synthesis. In particular, it is shown that anionic and zwitterionic uncouplers can be divided into groups of OH-, NH-, SH- and CH-acids. An important aspect of this review is the consideration of metabolic transformations of mitochondrial uncouplers that determine the tissue specificity of their action.

About the authors

Yu. N Antonenko

Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University, Faculty of Chemistry

Email: antonen@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

References

  1. Овчинников Ю. А., Иванов В. Т., Шкроб А. М. (1974) Мембрано-активные комплексоны, Наука, Москва.
  2. Henderson, P. J. F., McGivan, J. D., and Chappell, J. B. (1969) The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability, Biochem. J., 111, 521-535, https://doi.org/10.1042/bj1110521.
  3. Sato, T., Konno, H., Tanaka, Y., Kataoka, T., Nagai, K., Wasserman, H. H., and Ohkuma, S. (1998) Prodigiosins as a new group of H+/Cl– symporters that uncouple proton translocators, J. Biol. Chem., 273, 21455-21462, https://doi.org/10.1074/jbc.273.34.21455.
  4. Mitchell, P., and Moyle, J. (1967) Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers, Biochem. J., 104, 588-600, https://doi.org/10.1042/bj1040588.
  5. Skulachev, V. P. (1970) Electric fields in coupling membranes, FEBS Lett., 11, 301-308, https://doi.org/10.1016/0014-5793(70)80554-3.
  6. Ranga Rao, K. (1978) Pentachlorophenol: Chemistry, pharmacology, and environmental toxicology, Plenum Press, New York.
  7. Hollingworth, R. M., and Gadelhak, G. G. (1998) Mechanisms of action and toxicity of new pesticides that disrupt oxidative phosphorylation, Rev. Toxicol., 2, 253-266.
  8. Palmeira, C. M., Moreno, A. J., and Madeira, V. M. (1994) Interactions of herbicides 2,4-D and dinoseb with liver mitochondrial bioenergetics, Toxicol. Appl. Pharmacol., 127, 50-57, https://doi.org/10.1006/taap.1994.1138.
  9. Clarke, E. D., Greenhow, D. T., and Adams, D. (1998) Metabolism-related assays and their application to agrochemical research: reactivity of pesticides with glutathione and glutathione transferases, Pestic. Sci., 54, 385-393, https://doi.org/10.1002/(SICI)1096-9063(199812)54:4<385::AID-PS842>3.0.CO;2-C.
  10. Cadenas, S. (2018) Mitochondrial uncoupling, ROS generation and cardioprotection, Biochim. Biophys. Acta Bioenerg., 1859, 940-950, https://doi.org/10.1016/j.bbabio.2018.05.019.
  11. Geisler, J. G. (2019) 2,4 Dinitrophenol as medicine, Cells, 8, E280, https://doi.org/10.3390/cells8030280.
  12. Zorov, D. B., Andrianova, N. V., Babenko, V. A., Pevzner, I. B., Popkov, V. A., Zorov, S. D., Zorova, L. D., Plotnikov, E. Y., Sukhikh, G. T., and Silachev, D. N. (2021) Neuroprotective potential of mild uncoupling in mitochondria. Pros and Cons, Brain Sci., 11, 1050, https://doi.org/10.3390/brainsci11081050.
  13. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephroand neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029-1037, https://doi.org/10.1134/S0006297912090106.
  14. Rai, Y., Anita, Kumari, N., Singh, S., Kalra, N., Soni, R., and Bhatt, A. N. (2021) Mild mitochondrial uncoupling protects from ionizing radiation induced cell death by attenuating oxidative stress and mitochondrial damage, Biochim. Biophys. Acta Bioenerg., 1862, 148325, https://doi.org/10.1016/j.bbabio.2020.148325.
  15. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L., and Shulman, G. I. (2015) Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats, Science, 347, 1253-1256, https://doi.org/10.1126/science.aaa0672.
  16. Tao, H., Zhang, Y., Zeng, X., Shulman, G. I., and Jin, S. (2014) Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice, Nat. Med., 20, 1263-1269, https://doi.org/10.1038/nm.3699.
  17. Kanemoto, N., Okamoto, T., Tanabe, K., Shimada, T., Minoshima, H., Hidoh, Y., Aoyama, M., Ban, T., Kobayashi, Y., Ando, H., Inoue, Y., Itotani, M., and Sato, S. (2019) Antidiabetic and cardiovascular beneficial effects of a liver-localized mitochondrial uncoupler, Nat. Commun., 10, 2172, https://doi.org/10.1038/s41467-019-09911-6.
  18. Shrestha, R., Johnson, E., and Byrne, F. L. (2021) Exploring the therapeutic potential of mitochondrial uncouplers in cancer, Mol. Metab., 51, 101222, https://doi.org/10.1016/j.molmet.2021.101222.
  19. Tainter, M. L. (1938) Growth, life-span and food intake of white rats fed dinitrophenol throughout life, J. Pharmacol. Exp. Ther., 63, 51-57, https://doi.org/10.1016/S0022-3565(25)08958-X.
  20. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552-560, https://doi.org/10.1111/j.1474-9726.2008.00407.x.
  21. Barros, M. H., Bandy, B., Tahara, E. B., and Kowaltowski, A. J. (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae, J. Biol. Chem., 279, 49883-49888, https://doi.org/10.1074/jbc.M408918200.
  22. Padalko, V. I. (2005) Uncoupler of oxidative phosphorylation prolongs the lifespan of Drosophila, Biochemistry (Moscow), 70, 986-989, https://doi.org/10.1007/s10541-005-0213-1.
  23. Setty, O. H., Hendler, R. W., and Shrager, R. I. (1983) Simultaneous measurements of proton motive force, delta pH, membrane potential, and H+/O ratios in intact Escherichia coli, Biophys. J., 43, 371-381, https://doi.org/10.1016/S0006-3495(83)84360-4.
  24. Westerhoff, H. V., Juretic, D., Hendler, R. W., and Zasloff, M. (1989) Magainins and the disruption of membrane-linkedfree-energy transduction, Proc. Natl. Acad. Sci. USA, 86, 6597-6601, https://doi.org/10.1073/pnas.86.17.6597.
  25. Jung, D. W., Davis, M. H., and Brierley, G. P. (1989) Estimation of matrix pH in isolated heart mitochondria using a fluorescent probe, Anal. Biochem., 178, 348-354, https://doi.org/10.1016/0003-2697(89)90651-9.
  26. Bertholet, A. M., Natale, A. M., Bisignano, P., Suzuki, J., Fedorenko, A., Hamilton, J., Brustovetsky, T., Kazak, L., Garrity, R., Chouchani, E. T., Brustovetsky, N., Grabe, M., and Kirichok, Y. (2022) Mitochondrial uncouplers induce proton leak by activating AAC and UCP1, Nature, 606, 180-187, https://doi.org/10.1038/s41586-022-04747-5.
  27. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, Eur. J. Biochem., 182, 585-592, https://doi.org/10.1111/j.1432-1033.1989.tb14867.x.
  28. Khailova, L. S., Kirsanov, R. S., Rokitskaya, T. I., Krasnov, V. S., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2024) Mitochondrial uncoupling caused by a wide variety of protonophores is differently sensitive to carboxyatractyloside in rat heart and liver mitochondria, Biochim. Biophys. Acta Bioenerg., 1865, 149506, https://doi.org/10.1016/j.bbabio.2024.149506.
  29. Weinbach, E. C., and Garbus, J. (1969) Mechanism of action of reagents that uncouple oxidative phosphorylation, Nature, 221, 1016-1018, https://doi.org/10.1038/2211016a0.
  30. Hanstein, W. G. (1976) Uncoupling of oxidative phosphorylation, Biochim. Biophys. Acta, 456, 129-148, https://doi.org/10.1016/0304-4173(76)90010-0.
  31. Katre, N. V., and Wilson, D. F. (1978) Interaction of uncouplers with the mitochondrial membrane: identification of the high affinity binding site, Arch. Biochem. Biophys., 191, 647-656, https://doi.org/10.1016/0003-9861(78)90403-4.
  32. Childress, E. S., Alexopoulos, S. J., Hoehn, K. L., and Santos, W. L. (2018) Small molecule mitochondrial uncouplers and their therapeutic potential, J. Med. Chem., 61, 4641-4655, https://doi.org/10.1021/acs.jmedchem.7b01182.
  33. Goedeke, L., and Shulman, G. I. (2021) Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH, Mol. Metab., 46, 101178, https://doi.org/10.1016/j.molmet.2021.101178.
  34. Kotova, E. A., and Antonenko, Y. N. (2022) Fifty years of research on protonophores: mitochondrial uncoupling as a basis for therapeutic action, Acta Naturae, 14, 4-13, https://doi.org/10.32607/actanaturae.11610.
  35. Dos Santos, B. G., Brisnovali, N. F., and Goedeke, L. (2024) Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome, Biochem. J., 481, 1831-1854, https://doi.org/10.1042/BCJ20240005.
  36. Samartsev, V. N., Semenova, A. A., Belosludtsev, K. N., and Dubinin, M. V. (2023) Modulators reducing the efficiency of oxidative ATP synthesis in mitochondria: protonophore uncouplers, cyclic redox agents, and decouplers, Biophys. Rev., 15, 851-857, https://doi.org/10.1007/s12551-023-01160-8.
  37. McLaughlin, S. G., and Dilger, J. P. (1980) Transport of protons across membranes by weak acids, Physiol. Rev., 60, 825-863, https://doi.org/10.1152/physrev.1980.60.3.825.
  38. Terada, H. (1981) The interaction of highly active uncouplers with mitochondria, Biochim. Biophys. Acta, 639, 225-242, https://doi.org/10.1016/0304-4173(81)90011-2.
  39. McLaughlin, S. (1972) The mechanism of action of DNP on phospholipid bilayer membranes, J. Membr. Biol., 9, 361-372, https://doi.org/10.1007/BF01868062.
  40. Borisova, M. P., Ermishkin, L. N., Liberman, E. A., Silberstein, A. Y., and Trofimov, E. M. (1974) Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole, J. Membr. Biol., 18, 243-261, https://doi.org/10.1007/BF01870115.
  41. Foster, M., and McLaughlin, S. (1974) Complexes between uncouplers of oxidative phosphorylation, J. Membr. Biol., 17, 155-180, https://doi.org/10.1007/BF01870177.
  42. Smejtek, P., Hsu, K., and Perman, W. H. (1976) Electrical conductivity in lipid bilayer membranes induced by pentachlorphenol, Biophys. J., 16, 319-336, https://doi.org/10.1016/S0006-3495(76)85691-3.
  43. Wilson, D. F., Ting, H. P., and Koppelman, M. S. (1971) Mechanism of action of uncouplers of oxidative phosphorylation, Biochemistry, 10, 2897-2902, https://doi.org/10.1021/bi00791a016.
  44. Dilger, J., and McLaughlin, S. (1979) Proton transport through membranes induced by weak acids: a study of two substituted benzimidazoles, J. Membr. Biol., 46, 359-384, https://doi.org/10.1007/BF01868755.
  45. Barstad, A. W., Peyton, D. H., and Smejtek, P. (1993) AHA – heterodimer of a class-2 uncoupler – pentachlorophenol, Biochim. Biophys. Acta, 1140, 262-270, https://doi.org/10.1016/0005-2728(93)90065-N.
  46. Liberman, E. A., and Topaly, V. P. (1969) Permeability of biomolecular phospholipid membranes for fat-soluble ions [in Russian], Biofizika, 14, 452-461.
  47. Brockman, H. (1994) Dipole potential of lipid membranes, Chem. Phys. Lipids, 73, 57-79, https://doi.org/10.1016/0009-3084(94)90174-0.
  48. Gawrisch, K., Ruston, D., Zimmerberg, J., Parsegian, V. A., Rand, R. P., and Fuller, N. (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces, Biophys. J., 61, 1213-1223, https://doi.org/10.1016/S0006-3495(92)81931-8.
  49. Маркин В. С., Чизмаджев Ю. А. (1974) Индуцированный ионный транспорт, Наука, Москва.
  50. Firsov, A. M., Popova, L. B., Khailova, L. S., Nazarov, P. A., Kotova, E. A., and Antonenko, Y. N. (2021) Protonophoric action of BAM15 on planar bilayers, liposomes, mitochondria, bacteria and neurons, Bioelectrochemistry, 137, 107673, https://doi.org/10.1016/j.bioelechem.2020.107673.
  51. Miyoshi, H., Tsujishita, H., Tokutake, N., and Fujita, T. (1990) Quantitative analysis of uncoupling activity of substituted phenols with a physicochemical substituent and molecular parameters, Biochim. Biophys. Acta, 1016, 99-106, https://doi.org/10.1016/0005-2728(90)90011-R.
  52. Spycher, S., Escher, B. I., and Gasteiger, J. (2005) A quantitative structure–activity relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation, Chem. Res. Toxicol., 18, 1858-1867, https://doi.org/10.1021/tx050166j.
  53. Spycher, S., Smejtek, P., Netzeva, T. I., and Escher, B. I. (2008) Toward a class-independent quantitative structure–activity relationship model for uncouplers of oxidative phosphorylation, Chem Res. Toxicol., 21, 911-927, https://doi.org/10.1021/tx700391f.
  54. Martineau, L. C. (2012) Simple thermodynamic model of unassisted proton shuttle uncoupling and prediction of activity from calculated speciation, lipophilicity, and molecular geometry, J. Theor. Biol., 303, 33-61, https://doi.org/10.1016/j.jtbi.2012.02.032.
  55. Naven, R. T., Swiss, R., Klug-McLeod, J., Will, Y., and Greene, N. (2013) The development of structure-activity relationships for mitochondrial dysfunction: uncoupling of oxidative phosphorylation, Toxicol. Sci., 131, 271-278, https://doi.org/10.1093/toxsci/kfs279.
  56. Ebert, A., and Goss, K.-U. (2020) Predicting uncoupling toxicity of organic acids based on their molecular structure using a biophysical model, Chem. Res. Toxicol., 33, 1835-1844, https://doi.org/10.1021/acs.chemrestox.0c00063.
  57. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.
  58. Bakker, E. P., van den Heuvel, E. J., Wiechmann, A. H., and van Dam, K. (1973) A comparison between the effectiveness of uncouplers of oxidative phosphorylation in mitochondria and in different artificial membrane systems, Biochim. Biophys. Acta, 292, 78-87, https://doi.org/10.1016/0005-2728(73)90252-1.
  59. Miyoshi, H., Nishioka, T., and Fujita, T. (1987) Quantitative relationship between protonophoric and uncoupling activities of substituted phenols, Biochim. Biophys. Acta, 891, 194-204, https://doi.org/10.1016/0005-2728(87)90011-9.
  60. Ting, H. P., Wilson, D. F., and Chance, B. (1970) Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes, Arch. Biochem. Biophys., 141, 141-146, https://doi.org/10.1016/0003-9861(70)90116-5.
  61. Cunarro, J., and Weiner, M. W. (1975) Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria, Biochim. Biophys. Acta, 387, 234-240, https://doi.org/10.1016/0005-2728(75)90106-1.
  62. Parker, V. H. (1965) Uncouplers of rat-liver mitochondrial oxidative phosphorylation, Biochem. J., 97, 658-662, https://doi.org/10.1042/bj0970658.
  63. Zuna, K., Jovanovic, O., Khailova, L. S., Skulj, S., Brkljaca, Z., Kreiter, J., Kotova, E. A., Vazdar, M., Antonenko, Y. N., and Pohl, E. E. (2021) Mitochondrial uncoupling proteins (UCP1-UCP3) and adenine nucleotide translocase (ANT1) enhance the protonophoric action of 2,4-dinitrophenol in mitochondria and planar bilayer membranes, Biomolecules, 11, 1178, https://doi.org/10.3390/biom11081178.
  64. Yaguzhinskii, L. S., Ratnikova, L. A., and Kolesova, G. M. (1973) Quantitative relation between the value of the dissociation constant of uncoupling agents and their efficiency in mitochondrial membranes [in Russian], Biofizika, 18, 460-465.
  65. Liberman, E. A., and Topaly, V. P. (1968) Selective transport of ions through bimolecular phospholipid membranes, Biochim. Biophys. Acta, 163, 125-136, https://doi.org/10.1016/0005-2736(68)90089-8.
  66. Афанасьева Е.В., Костырко В.А. (1986) Ингибирование пентахлорфенолом окисления сукцината дыхательной цепью субмитохондриальных частиц из сердца быка, Биохимия, 51, 823-829.
  67. Popova, L. B., Nosikova, E. S., Kotova, E. A., Tarasova, E. O., Nazarov, P. A., Khailova, L. S., Balezina, O. P., and Antonenko, Y. N. (2018) Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials, Biochim. Biophys. Acta Biomembr., 1860, 1000-1007, https://doi.org/10.1016/j.bbamem.2018.01.008.
  68. Horner, W. D. (1941) A study of dinitrophenol and its relation to cataract formation, Trans. Am. Ophthalmol. Soc., 39, 405-437.
  69. Miranda, E. J., McIntyre, I. M., Parker, D. R., Gary, R. D., and Logan, B. K. (2006) Two deaths attributed to the use of 2,4-dinitrophenol, J. Anal. Toxicol., 30, 219-222, https://doi.org/10.1093/jat/30.3.219.
  70. Colman, E. (2007) Dinitrophenol and obesity: an early twentieth-century regulatory dilemma, Regul. Toxicol. Pharmacol., 48, 115-117, https://doi.org/10.1016/j.yrtph.2007.03.006.
  71. Grundlingh, J., Dargan, P. I., El-Zanfaly, M., and Wood, D. M. (2011) 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol., 7, 205-212, https://doi.org/10.1007/s13181-011-0162-6.
  72. Khailova, L. S., Vygodina, T. V., Lomakina, G. Y., Kotova, E. A., and Antonenko, Y. N. (2020) Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers, Biochem. Biophys. Res. Commun., 530, 29-34, https://doi.org/10.1016/j.bbrc.2020.06.131.
  73. Wesson, L. G. (1940) Alkyl ethers of 2,4-dinitrophenol as stimulants of the metabolic rate, J. Am. Chem. Soc., 62, 3466-3468, https://doi.org/10.1021/ja01869a049.
  74. Perry, R. J., Kim, T., Zhang, X. M., Lee, H. Y., Pesta, D., Popov, V. B., Zhang, D., Rahimi, Y., Jurczak, M. J., Cline, G. W., Spiegel, D. A., and Shulman, G. I. (2013) Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler, Cell Metab., 18, 740-748, https://doi.org/10.1016/j.cmet.2013.10.004.
  75. De Felice, F. G., and Ferreira, S. T. (2006) Novel neuroprotective, neuritogenic and anti-amyloidogenic properties of 2,4-dinitrophenol: the gentle face of Janus, IUBMB Life, 58, 185-191, https://doi.org/10.1080/15216540600702198.
  76. Sebollela, A., Freitas-Correa, L., Oliveira, F. F., Mendes, C. T., Wasilewska-Sampaio, A. P., Camacho-Pereira, J., Galina, A., Brentani, H., Passetti, F., De Felice, F. G., Dias-Neto, E., and Ferreira, S. T. (2010) Expression profile of rat hippocampal neurons treated with the neuroprotective compound 2,4-dinitrophenol: up-regulation of cAMP signaling genes, Neurotox. Res., 18, 112-123, https://doi.org/10.1007/s12640-009-9133-y.
  77. Holmuhamedov, E. L., Jahangir, A., Oberlin, A., Komarov, A., Colombini, M., and Terzic, A. (2004) Potassium channel openers are uncoupling protonophores: implication in cardioprotection, FEBS Lett., 568, 167-170, https://doi.org/10.1016/j.febslet.2004.05.031.
  78. Modriansky, M., and Gabrielova, E. (2009) Uncouple my heart: the benefits of inefficiency, J. Bioenerg. Biomembr., 41, 133-136, https://doi.org/10.1007/s10863-009-9212-z.
  79. Noureddin, M., Khan, S., Portell, F., Jorkasky, D., Dennis, J., Khanb, O., Johansson, L., Johansson, E., and Sanyal, A. J. (2023) Safety and efficacy of once-daily HU6 versus placebo in people with non-alcoholic fatty liver disease and high BMI: a randomised, double-blind, placebo-controlled, phase 2a trial, Lancet Gastroenterol. Hepatol., 8, 1094-1105, https://doi.org/10.1016/S2468-1253(23)00198-X.
  80. Kitzman, D. W., Lewis, G. D., Pandey, A., Borlaug, B. A., Sauer, A. J., Litwin, S. E., Sharma, K., Jorkasky, D. K., Khan, S., and Shah, S. J. (2024) A novel controlled metabolic accelerator for the treatment of obesity-related heart failure with preserved ejection fraction: rationale and design of the Phase 2a HuMAIN trial, Eur. J. Heart Fail., 26, 2013-2024, https://doi.org/10.1002/ejhf.3305.
  81. Ng, M. Y., Song, Z. J., Venkatesan, G., Rodriguez-Cuenca, S., West, J. A., Yang, S., Tan, C. H., Ho, P. C. L., Griffin, J. L., Vidal-Puig, A., Bassetto, M., and Hagen, T. (2024) Conjugating uncoupler compounds with hydrophobic hydrocarbon chains to achieve adipose tissue selective drug accumulation, Sci. Rep., 14, 4932, https://doi.org/10.1038/s41598-024-54466-2.
  82. Avlonitis, N., Chalmers, S., McDougall, C., Stanton-Humphreys, M. N., Brown, C. T., McCarron, J. G., and Conway, S. J. (2009) Caged AG10: new tools for spatially predefined mitochondrial uncoupling, Mol. Biosyst., 5, 450-457, https://doi.org/10.1039/b820415m.
  83. Chalmers, S., Caldwell, S. T., Quin, C., Prime, T. A., James, A. M., Cairns, A. G., Murphy, M. P., McCarron, J. G., and Hartley, R. C. (2012) Selective uncoupling of individual mitochondria within a cell using a mitochondria-­targeted photoactivated protonophore, J. Am. Chem. Soc., 134, 758-761, https://doi.org/10.1021/ja2077922.
  84. Bobba, K. N., Binoy, A., Koo, S., Nedungadi, D., Podder, A., Sharma, A., Mishra, N., Kim, J. S., and Bhuniya, S. (2019) Direct readout protonophore induced selective uncoupling and dysfunction of individual mitochondria within cancer cells, Chem. Commun., 55, 6429-6432, https://doi.org/10.1039/C9CC01483G.
  85. Kand, D., Pizarro, L., Angel, I., Avni, A., Friedmann-Morvinski, D., and Weinstain, R. (2019) Organelle-targeted BODIPY photocages: visible-light-mediated subcellular photorelease, Angew. Chem. Int. Ed. Engl., 58, 4659-4663, https://doi.org/10.1002/anie.201900850.
  86. Lopez-Corrales, M., Rovira, A., Gandioso, A., Nonell, S., Bosch, M., and Marchan, V. (2023) Mitochondria-targeted COUPY photocages: synthesis and visible-light photoactivation in living cells, J. Org. Chem., 88, 7128-7140, https://doi.org/10.1021/acs.joc.3c00387.
  87. Firsov, A. M., Khailova, L. S., Nazarov, P. A., Ukraintsev, M., Kirsanov, R. S., Kovalchuk, S. I., Lyamzaev, K. G., Panteleeva, A. A., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2025) 2-Azido-4-nitrophenol is a light-sensitive antibacterial protonophore, Bioelectrochemistry, 167, 109055, https://doi.org/10.1016/j.bioelechem.2025.109055.
  88. Muraoka, S., and Terada, H. (1972) 3,5-Di-tert-butyl-4-hydroxybenzylidenemalononitrile, a new powerful uncoupler of respiratory-chain phosphorylation, Biochim. Biophys. Acta Bioenerg., 275, 271-275, https://doi.org/10.1016/0005-2728(72)90047-3.
  89. Terada, H., and van Dam, K. (1975) On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile), Biochim. Biophys. Acta Bioenerg., 387, 507-518, https://doi.org/10.1016/0005-2728(75)90089-4.
  90. Terada, H. (1990) Uncouplers of oxidative phosphorylation, Environ. Health Perspect., 87, 213-218, https://doi.org/10.1289/ehp.9087213.
  91. Grivennikova, V. G., Khailova, L. S., Zharova, T. V., Kotova, E. A., and Antonenko, Y. N. (2022) Inhibition of respiratory complex I by 6-ketocholestanol: relevance to recoupling action in mitochondria, Biochim. Biophys. Acta Bioenerg., 1863, 148594, https://doi.org/10.1016/j.bbabio.2022.148594.
  92. Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355, 305-308, https://doi.org/10.1016/0014-5793(94)01211-3.
  93. Starkov, A. A., Bloch, D. A., Chernyak, B. V., Dedukhova, V. I., Mansurova, S. E., Severina, I. I., Simonyan, R. A., Vygodina, T. V., and Skulachev, V. P. (1997) 6-Ketocholestanol is a recoupler for mitochondria, chromatophores and cytochrome oxidase proteoliposomes, Biochim. Biophys. Acta, 1318, 159-172, https://doi.org/10.1016/S0005-2728(96)00134-X.
  94. Franklin, J. C., and Cafiso, D. S. (1993) Internal electrostatic potentials in bilayers measuring and controlling dipole potentials in lipid vesicles, Biophys. J., 65, 289-299, https://doi.org/10.1016/S0006-3495(93)81051-8.
  95. Cuellar, A., Ramirez, J., Infante, V. M., and Chavez, E. (1997) Further studies on the recoupling effect of 6-ketocholestanol upon oxidative phosphorylation in uncoupled liver mitochondria, FEBS Lett., 411, 365-368, https://doi.org/10.1016/S0014-5793(97)00741-2.
  96. Gazit, A., Yaish, P., Gilon, C., and Levitzki, A. (1989) Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors, J. Med. Chem., 32, 2344-2352, https://doi.org/10.1021/jm00130a020.
  97. Levitzki, A., and Gilon, C. (1991) Tyrphostins as molecular tools and potential antiproliferative drugs, Trends Pharmacol. Sci., 12, 171-174, https://doi.org/10.1016/0165-6147(91)90538-4.
  98. Needham, D. (2024) Niclosamide: a career builder, J. Control Release, 369, 786-856, https://doi.org/10.1016/j.jconrel.2023.07.016.
  99. Jurgeit, A., Mcdowell, R., Moese, S., Meldrum, E., Schwendener, R., and Greber, U. F. (2012) Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects, PLoS Pathog., 8, e1002976, https://doi.org/10.1371/journal.ppat.1002976.
  100. Jung, E., Nam, S., Oh, H., Jun, S., Ro, H. J., Kim, B., Kim, M., and Go, Y. Y. (2019) Neutralization of acidic intracellular vesicles by niclosamide inhibits multiple steps of the dengue virus life cycle in vitro, Sci. Rep., 9, 8682, https://doi.org/10.1038/s41598-019-45095-1.
  101. Kozhokaru, A. F., Liberman, E. A., Topaly, V. P., and Topaly, E. E. (1976) Study of the mechanism of action of fasciolocides using bimolecular phospholipid membranes [in Russian], Biofizika, 21, 766-767.
  102. Kozhokaru, A. F., G’bev, E. E., Vladimirov, Iu. A., and Akoev, I. G. (1981) Action of new class of substituted salicylanilides on ion conductivity of lipid membranes [in Russian], Biofizika, 26, 995-998.
  103. Kasianowicz, J., Benz, R., and Mclaughlin, S. (1987) How do protons cross the membrane solution interface? kinetic studies on bilayer membranes exposed to the protonophore s-13 (5-chloro-3-tertbutyl-2-chloro-4nitrosalicylanilide), J. Membrane Biol., 95, 73-89, https://doi.org/10.1007/BF01869632.
  104. Ng, M. Y., Song, Z. J., Tan, C. H., Bassetto, M., and Hagen, T. (2024) Structural investigations on the mitochondrial uncouplers niclosamide and FCCP, FEBS Open Bio., 14, 1057-1071, https://doi.org/10.1002/2211-5463.13817.
  105. Terada, H., Goto, S., Yamamoto, K., Takeuchi, I., Hamada, Y., and Miyake, K. (1988) Structural requirements of salicylanilides for uncoupling activity in mitochondria: quantitative analysis of structure-uncoupling relationships, Biochim. Biophys. Acta, 936, 504-512, https://doi.org/10.1016/0005-2728(88)90027-8.
  106. Storey, B. T., Wilson, D. F., Bracey, A., Rosen, S. L., and Stephenson, S. (1975) Steric and electronic effects on the uncoupling activity of substituted 3,5 dichlorosalicylanilides, FEBS Lett., 49, 338-341, https://doi.org/10.1016/0014-5793(75)80780-0.
  107. Amireddy, N., Puttapaka, S. N., Vinnakota, R. L., Ravuri, H. G., Thonda, S., and Kalivendi, S. V. (2017) The unintended mitochondrial uncoupling effects of the FDA-approved anti-helminth drug nitazoxanide mitigates experimental parkinsonism in mice, J. Biol. Chem., 292, 15731-15743, https://doi.org/10.1074/jbc.M117.791863.
  108. Ma, M.-H., Li, F.-F., Li, W.-F., Zhao, H., Jiang, M., Yu, Y.-Y., Dong, Y.-C., Zhang, Y.-X., Li, P., Bu, W.-J., Sun, Z.-J., and Dong, D.-L. (2023) Repurposing nitazoxanide as a novel anti-atherosclerotic drug based on mitochondrial uncoupling mechanisms, Br. J. Pharmacol., 180, 62-79, https://doi.org/10.1111/bph.15949.
  109. Li, F., Jiang, M., Ma, M., Chen, X., Zhang, Y., Zhang, Y., Yu, Y., Cui, Y., Chen, J., Zhao, H., Sun, Z., and Dong, D. (2022) Anthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice, Acta Pharm. Sin. B, 12, 1322-1338, https://doi.org/10.1016/j.apsb.2021.09.009.
  110. Kozhokaru, A. F., Ruzieva, R. Kh., Topaly, V. P., and Topaly, E. E. (1978) Protonophoric and uncoupling activity of water-soluble pea flavonols [in Russian], Biofizika, 23, 716-717.
  111. De Jonge, P. C., Wieringa, T., Van Putten, J. P., Krans, H. M., and van Dam, K. (1983) Phloretin – an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation, Biochim. Biophys. Acta, 722, 219-225, https://doi.org/10.1016/0005-2728(83)90177-9.
  112. Trumbeckaite, S., Bernatoniene, J., Majiene, D., Jakstas, V., Savickas, A., and Toleikis, A. (2006) The effect of flavonoids on rat heart mitochondrial function, Biomed. Pharmacother., 60, 245-248, https://doi.org/10.1016/j.biopha.2006.04.003.
  113. Sell, T. S., Belkacemi, T., Flockerzi, V., and Beck, A. (2014) Protonophore properties of hyperforin are essential for its pharmacological activity, Sci. Rep., 4, 7500, https://doi.org/10.1038/srep07500.
  114. Andersen, O. S., Finkelstein, A., Katz, I., and Cass, A. (1976) Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol., 67, 749-771, https://doi.org/10.1085/jgp.67.6.749.
  115. Pohl, P., Rokitskaya, T. I., Pohl, E. E., and Saparov, S. M. (1997) Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements, Biochim. Biophys. Acta, 1323, 163-172, https://doi.org/10.1016/S0005-2736(96)00185-X.
  116. Rokitskaya, T. I., Ilyasova, T. M., Severina, I. I., Antonenko, Y. N., and Skulachev, V. P. (2013) Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores, Eur. Biophys. J., 42, 477-485, https://doi.org/10.1007/s00249-013-0898-9.
  117. Schmitt, L., Krings, K. S., Wolsing, A., Buque, X., Zimmermann, M., Flores-Romero, H., Lenz, T., Lechtenberg, I., Peter, C., Stork, B., Teusch, N., Proksch, P., Stuehler, K., Garcia-Saez, A. J., Reichert, A. S., Aspichueta, P., Bhatia, S., and Wesselborg, S. (2024) Targeting mitochondrial metabolism by the mitotoxin bromoxib in leukemia and lymphoma cells, Cell Commun. Signal., 22, 541, https://doi.org/10.1186/s12964-024-01913-2.
  118. Shchepinova, M. M., Denisov, S. S., Kotova, E. A., Khailova, L. S., Knorre, D. A., Korshunova, G. A., Tashlitsky, V. N., Severin, F. F., and Antonenko, Y. N. (2014) Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations, Biochim. Biophys. Acta Bioenerg., 1837, 149-158, https://doi.org/10.1016/j.bbabio.2013.09.011.
  119. Nazarov, P. A., Kirsanov, R. S., Denisov, S. S., Khailova, L. S., Karakozova, M. V., Lyamzaev, K. G., Korshunova, G. A., Lukyanov, K. A., Kotova, E. A., and Antonenko, Y. N. (2020) Fluorescein derivatives as antibacterial agents acting via membrane depolarization, Biomolecules, 10, 309, https://doi.org/10.3390/biom10020309.
  120. Venugopala, K. N., Rashmi, V., and Odhav, B. (2013) Review on natural coumarin lead compounds for their pharmacological activity, Biomed. Res. Int., 2013, 963248, https://doi.org/10.1155/2013/963248.
  121. Dadak, V., Zboril, P., Sanek, J., and Svoboda, A. (1980) Mode of effect of ostruthin, a phenolic coumarin on respiration and oxidative phosphorylation of rat liver mitochondria, Collect. Czechoslovak Chem. Commun., 45, 653-666, https://doi.org/10.1135/cccc19800653.
  122. Du, L., Mahdi, F., Jekabsons, M. B., Nagle, D. G., and Zhou, Y. D. (2010) Mammea E/BB, an isoprenylated dihydroxycoumarin protonophore that potently uncouples mitochondrial electron transport, disrupts hypoxic signaling in tumor cells, J. Nat. Prod., 73, 1868-1872, https://doi.org/10.1021/np100501n.
  123. Nowak, P. M., Sagan, F., and Mitoraj, M. P. (2017) Origin of remarkably different acidity of hydroxycoumarins – joint experimental and theoretical studies, J. Phys. Chem. B, 121, 4554-4561, https://doi.org/10.1021/acs.jpcb.7b01849.
  124. Krasnov, V. S., Kirsanov, R. S., Khailova, L. S., Firsov, A. M., Nazarov, P. A., Tashlitsky, V. N., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2022) Alkyl esters of umbelliferone-4-acetic acid as protonophores in bilayer lipid membranes and ALDH2-dependent soft uncouplers in rat liver mitochondria, Bioelectrochemistry, 145, 108081, https://doi.org/10.1016/j.bioelechem.2022.108081.
  125. Krasnov, V. S., Kirsanov, R. S., Khailova, L. S., Popova, L. B., Lyamzaev, K. G., Firsov, A. M., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2022) Alkyl esters of 7-hydroxycoumarin-3-carboxylic acid as potent tissue-specific uncouplers of oxidative phosphorylation: involvement of ATP/ADP translocase in mitochondrial uncoupling, Arch. Biochem. Biophys., 728, 109366, https://doi.org/10.1016/j.abb.2022.109366.
  126. Heytler, P. G. (1979) Uncouplers of oxidative phosphorylation, Methods Enzymol., 55, 462-472, https://doi.org/10.1016/0076-6879(79)55060-5.
  127. Rokitskaya, T. I., Kotova, E. A., Luzhkov, V. B., Kirsanov, R. S., Aleksandrova, E. V., Korshunova, G. A., Tashlitsky, V. N., and Antonenko, Y. N. (2021) Lipophilic ion aromaticity is not important for permeability across lipid membranes, Biochim. Biophys. Acta Biomembr., 1863, 183483, https://doi.org/10.1016/j.bbamem.2020.183483.
  128. Rupprecht, A., Sokolenko, E. A., Beck, V., Ninnemann, O., Jaburek, M., Trimbuch, T., Klishin, S. S., Jezek, P., Skulachev, V. P., and Pohl, E. E. (2010) Role of the transmembrane potential in the membrane proton leak, Biophys. J., 98, 1503-1511, https://doi.org/10.1016/j.bpj.2009.12.4301.
  129. Montal, M., and Mueller, P. (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. USA, 69, 3561-3566, https://doi.org/10.1073/pnas.69.12.3561.
  130. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., and Volkov, N. I. (1988) Carboxyatractylate inhibits the uncoupling effect of free fatty acids, FEBS Lett., 226, 265-269, https://doi.org/10.1016/0014-5793(88)81436-4.
  131. Urbankova, E., Voltchenko, A., Pohl, P., Jezek, P., and Pohl, E. E. (2003) Transport kinetics of uncoupling proteins. Analysis of UCP1 reconstituted in planar lipid bilayers, J. Biol. Chem., 278, 32497-32500, https://doi.org/10.1074/jbc.M303721200.
  132. Beck, V., Jaburek, M., Demina, T., Rupprecht, A., Porter, R. K., Jezek, P., and Pohl, E. E. (2007) Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers, FASEB J., 21, 1137-1144, https://doi.org/10.1096/fj.06-7489com.
  133. Fedorenko, A., Lishko, P. V., and Kirichok, Y. (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria, Cell, 151, 400-413, https://doi.org/10.1016/j.cell.2012.09.010.
  134. Bertholet, A. M., Chouchani, E. T., Kazak, L., Angelin, A., Fedorenko, A., Long, J. Z., Vidoni, S., Garrity, R., Cho, J., Terada, N., Wallace, D. C., Spiegelman, B. M., and Kirichok, Y. (2019) H+ transport is an integral function of the mitochondrial ADP/ATP carrier, Nature, 571, 515-520, https://doi.org/10.1038/s41586-019-1400-3.
  135. Kreiter, J., Rupprecht, A., Skulj, S., Brkljaca, Z., Žuna, K., Knyazev, D. G., Bardakji, S., Vazdar, M., and Pohl, E. E. (2021) ANT1 Activation and inhibition patterns support the fatty acid cycling mechanism for proton transport, Int. J. Mol. Sci., 22, 2490, https://doi.org/10.3390/ijms22052490.
  136. Kreiter, J., Skulj, S., Brkljaca, Z., Bardakji, S., Vazdar, M., and Pohl, E. E. (2023) FA sliding as the mechanism for the ANT1-mediated fatty acid anion transport in lipid bilayers, Int. J. Mol. Sci., 24, 13701, https://doi.org/10.3390/ijms241813701.
  137. Pohl, E. E., Vazdar, M., and Kreiter, J. (2025) Exploring the proton transport mechanism of the mitochondrial ADP/ATP carrier: FA-cycling hypothesis and beyond, Prot. Sci., 34, e70047, https://doi.org/10.1002/pro.70047.
  138. Semenova, A. A., Samartsev, V. N., and Dubinin, M. V. (2021) The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc1 complex, Biochimie, 181, 215-225, https://doi.org/10.1016/j.biochi.2020.12.021.
  139. Evtodienko, V. Y., Bondarenko, D. I., and Antonenko, Y. N. (1999) Permeation of dicarboxylic acids with different terminal position of two carboxylic groups through planar bilayer lipid membranes, Biochim. Biophys. Acta, 1420, 95-103, https://doi.org/10.1016/S0005-2736(99)00095-4.
  140. Radde, B. N., Alizadeh-Rad, N., Price, S. M., Schultz, D. J., and Klinge, C. M. (2016) Anacardic acid, salicylic acid, and oleic acid differentially alter cellular bioenergetic function in breast cancer cells, J. Cell Biochem., 117, 2521-2532, https://doi.org/10.1002/jcb.25544.
  141. Acevedo, A., Jones, A. E., Danna, B. T., Turner, R., Montales, K. P., Beninca, C., Reue, K., Shirihai, O. S., Stiles, L., Wallace, M., Wang, Y., Bertholet, A. M., and Divakaruni, A. S. (2024) The BCKDK inhibitor BT2 is a chemical uncoupler that lowers mitochondrial ROS production and de novo lipogenesis, J. Biol. Chem., 300, 105702, https://doi.org/10.1016/j.jbc.2024.105702.
  142. Zhang, Y., Tan, J., and Chen, Y. (2023) Visible-light-induced protein labeling in live cells with aryl azides, Chem. Commun., 59, 2413-2420, https://doi.org/10.1039/D2CC06987C.
  143. Hanstein, W. G., and Hatefi, Y. (1974) Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling, J. Biol. Chem., 249, 1356-1362, https://doi.org/10.1016/S0021-9258(19)42889-5.
  144. Hatefi, Y. (1975) Energy conservation and uncoupling in mitochondria, J. Supramol. Struct., 3, 201-213, https://doi.org/10.1002/jss.400030302.
  145. Schonfeld, P., Jezek, P., Belyaeva, E. A., Borecky, J., Slyshenkov, V. S., Wieckowski, M. R., and Wojtczak, L. (1996) Photomodification of mitochondrial proteins by azido fatty acids and its effect on mitochondrial energetics. Further evidence for the role of the ADP/ATP carrier in fatty-acid-mediated uncoupling, Eur. J. Biochem., 240, 387-393, https://doi.org/10.1111/j.1432-1033.1996.0387h.x.
  146. Valderrama, K., Pradel, E., Firsov, A. M., Drobecq, H., Bauderlique-le Roy, H., Villemagne, B., Antonenko, Y. N., and Hartkoorn, R. C. (2019) Pyrrolomycins are potent natural protonophores, Antimicrob. Agents Chemother., 63, e01450-19, https://doi.org/10.1128/AAC.01450-19.
  147. Firsov, A. M., Khailova, L. S., Rokitskaya, T. I., Kotova, E. A., and Antonenko, Y. N. (2022) Antibiotic pyrrolomycin as an efficient mitochondrial uncoupler, Biochemistry (Moscow), 87, 812-822, https://doi.org/10.1134/S0006297922080120.
  148. Treacy, M., Miller, T., Black, B., Gard, I., Hunt, D., and Hollingworth, R. M. (1994) Uncoupling activity and pesticidal properties of pyrroles, Biochem. Soc. Trans., 22, 244-247, https://doi.org/10.1042/bst0220244.
  149. Heytler, P. G., and Prichard, W. W. (1962) A new class of uncoupling agents – carbonyl cyanide phenylhydrazones, Biochem. Biophys. Res. Commun., 7, 272-275, https://doi.org/10.1016/0006-291X(62)90189-4.
  150. Heytler, P. G. (1963) Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts, Biochemistry, 2, 357-361, https://doi.org/10.1021/bi00902a031.
  151. Blum, J. J., and Sanadi, D. R. (1964) Activation of myosin adenosine triphosphatase by carbonyl cyanide p-chlorophenylhydrazone, J. Biol. Chem., 239, 452-454, https://doi.org/10.1016/S0021-9258(18)51700-2.
  152. Drobnica, L., and Sturdik, E. (1979) The reaction of carbonyl cyanide phenylhydrazones with thiols, Biochim. Biophys. Acta, 585, 462-476, https://doi.org/10.1016/0304-4165(79)90091-6.
  153. Toninello, A., and Siliprandi, N. (1982) Restoration of membrane potential in mitochondria deenergized with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), Biochim. Biophys. Acta, 682, 289-292, https://doi.org/10.1016/0005-2728(82)90110-4.
  154. Mlejnek, P., and Dolezel, P. (2015) Loss of mitochondrial transmembrane potential and glutathione depletion are not sufficient to account for induction of apoptosis by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone in human leukemia K562 cells, Chem. Biol. Interact., 239, 110, https://doi.org/10.1016/j.cbi.2015.06.033.
  155. Khailova, L. S., Firsov, A. M., Kotova, E. A., and Antonenko, Y. N. (2019) Interaction of potent mitochondrial uncouplers with thiol-containing antioxidants, Antioxidants, 8, 194, https://doi.org/10.3390/antiox8060194.
  156. Doczi, J., Karnok, N., Bui, D., Azarov, V., Pallag, G., Nazarian, S., Czumbel, B., Seyfried, T. N., and Chinopoulos, C. (2023) Viability of MCF cells is not correlated with mitochondrial bioenergetics, Sci. Rep., 13, 10822, https://doi.org/10.1038/s41598-023-37677-x.
  157. Demine, S., Renard, P., and Arnould, T. (2019) Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases, Cells, 8, E795, https://doi.org/10.3390/cells8080795.
  158. LeBlanc, O. H. (1971) The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: carbonylcyanide m-chloropenylhydrazone, J. Membr. Biol., 4, 227-251, https://doi.org/10.1007/BF02431973.
  159. O’Shaughnessy, K., and Hladky, S. B. (1983) Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone, Biochim. Biophys. Acta, 724, 381-387, https://doi.org/10.1016/0005-2728(83)90097-X.
  160. Benz, R., and McLaughlin, S. (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), Biophys. J., 41, 381-398, https://doi.org/10.1016/S0006-3495(83)84449-X.
  161. Cho, I., Song, H.-O., and Cho, J. H. (2017) Mitochondrial uncoupling attenuates age-dependent neurodegeneration in C. elegans, Mol. Cells, 40, 864-870, https://doi.org/10.14348/molcells.2017.0172.
  162. Katre, N. V., and Wilson, D. F. (1977) Interaction of uncouplers with the mitochondrial membrane: a high-affinity binding site, Arch. Biochem. Biophys., 184, 578-585, https://doi.org/10.1016/0003-9861(77)90468-4.
  163. Brennan, J. P., Southworth, R., Medina, R. A., Davidson, S. M., Duchen, M. R., and Shattock, M. J. (2006) Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation, Cardiovasc. Res., 72, 313-321, https://doi.org/10.1016/j.cardiores.2006.07.019.
  164. Chaudhari, A. A., Seol, J. W., Kim, S. J., Lee, Y. J., Kang, H. S., Kim, I. S., Kim, N. S., and Park, S. Y. (2007) Reactive oxygen species regulate Bax translocation and mitochondrial transmembrane potential, a possible mechanism for enhanced TRAIL-induced apoptosis by CCCP, Oncol. Rep., 18, 71-76, https://doi.org/10.3892/or.18.1.71.
  165. Han, Y. H., and Park, W. H. (2011) Intracellular glutathione levels are involved in carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone-induced apoptosis in As4. 1 juxtaglomerular cells, Int. J. Mol. Med., 27, 575-581, https://doi.org/10.3892/ijmm.2011.604.
  166. Lee, J. E., Kang, J. S., Shin, I. C., Lee, S. J., Hyun, D. H., Lee, K. S., and Koh, H. C. (2011) Fluazinam-induced apoptosis of SH-SY5Y cells is mediated by p53 and Bcl-2 family proteins, NeuroToxicol., 32, 702-710, https://doi.org/10.1016/j.neuro.2011.08.004.
  167. Jing, K., Shin, S., Jeong, S., Kim, S., Song, K.-S., Park, J.-H., Heo, J.-Y., Seo, K.-S., Park, S.-K., Kweon, G.-R., Wu, T., Park, J.-I., and Lim, K. (2014) Docosahexaenoic acid induces the degradation of HPV E6/E7 oncoproteins by activating the ubiquitin–proteasome system, Cell Death Dis., 5, e1524, https://doi.org/10.1038/cddis.2014.477.
  168. Zhang, X., Cheng, X., Yu, L., Yang, J., Calvo, R., Patnaik, S., Hu, X., Gao, Q., Yang, M., Lawas, M., Delling, M., Marugan, J., Ferrer, M., and Xu, H. (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy, Nat. Commun., 7, 12109, https://doi.org/10.1038/ncomms12109.
  169. Xiao, B., Goh, J.-Y., Xiao, L., Xian, H., Lim, K.-L., and Liou, Y.-C. (2017) Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin, J. Biol. Chem., 292, 16697-16708, https://doi.org/10.1074/jbc.M117.787739.
  170. Kenwood, B. M., Weaver, J. L., Bajwa, A., Poon, I. K., Byrne, F. L., Murrow, B. A., Calderone, J. A., Huang, L., Divakaruni, A. S., Tomsig, J. L., Okabe, K., Lo, R. H., Coleman, G. C., Columbus, L., Yan, Z., Saucerman, J. J., Smith, J. S., Holmes, J. W., Lynch, K. R., Ravichandran, K. S., Uchiyama, S., Santos, W. L., Rogers, G. W., Okusa, M. D., Bayliss, D. A., and Hoehn, K. L. (2013) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane, Mol. Metab., 3, 114-123, https://doi.org/10.1016/j.molmet.2013.11.005.
  171. Childress, E. S., Salamoun, J. M., Hargett, S. R., Alexopoulos, S. J., Chen, S.-Y., Shah, D. P., Santiago-Rivera, J., Garcia, C. J., Dai, Y., Tucker, S. P., Hoehn, K. L., and Santos, W. L. (2020) [1,2,5]Oxadiazolo[3,4-b]pyrazine-5,6-­diamine derivatives as mitochondrial uncouplers for the potential treatment of nonalcoholic steatohepatitis, J. Med. Chem., 63, 2511-2526, https://doi.org/10.1021/acs.jmedchem.9b01440.
  172. Alexopoulos, S. J., Chen, S.-Y., Brandon, A. E., Salamoun, J. M., Byrne, F. L., Garcia, C. J., Beretta, M., Olzomer, E. M., Shah, D. P., Philp, A. M., Hargett, S. R., Lawrence, R. T., Lee, B., Sligar, J., Carrive, P., Tucker, S. P., Philp, A., Lackner, C., Turner, N., Cooney, G. J., Santos, W. L., and Hoehn, K. L. (2020) Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice, Nat. Commun., 11, 2397, https://doi.org/10.1038/s41467-020-16298-2.
  173. Khailova, L. S., Krasnov, V. S., Kirsanov, R. S., Popova, L. B., Tashlitsky, V. N., Kotova, E. A., and Antonenko, Y. N. (2023) The transient character of mitochondrial uncoupling by the popular fungicide fluazinam is specific for liver, Arch. Biochem. Biophys., 746, 109735, https://doi.org/10.1016/j.abb.2023.109735.
  174. Guo, Z., Miyoshi, H., Komyoji, T., Haga, T., and Fujita, T. (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine], Biochim. Biophys. Acta, 1056, 89-92, https://doi.org/10.1016/S0005-2728(05)80077-5.
  175. Brandt, U., Schubert, J., Geck, P., and von Jagow, G. (1992) Uncoupling activity and physicochemical properties of derivatives of fluazinam, Biochim. Biophys. Acta, 1101, 41-47, https://doi.org/10.1016/0167-4838(92)90464-O.
  176. Kirsanov, R. S., Khailova, L. S., Krasnov, V. S., Firsov, A. M., Lyamzaev, K. G., Panteleeva, A. A., Popova, L. B., Nazarov, P. A., Tashlitsky, V. N., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2024) Spontaneous reversal of small molecule-induced mitochondrial uncoupling: the case of anilinothiophenes, FEBS J., 291, 5523-5539, https://doi.org/10.1111/febs.17329.
  177. Schaefer, G., and Buechel, K. H. (1970) Cyclic response of energy linked functions of liver mitochondria to uncoupling thiophene derivatives, FEBS Lett., 6, 217-220, https://doi.org/10.1016/0014-5793(70)80061-8.
  178. Dejonghe, W., Kuenen, S., Mylle, E., Vasileva, M., Keech, O., Viotti, C., Swerts, J., Fendrych, M., Ortiz-Morea, F. A., Mishev, K., Delang, S., Scholl, S., Zarza, X., Heilmann, M., Kourelis, J., Kasprowicz, J., Nguyen, L. S. L., Drozdzecki, A., Van Houtte, I., Szatmari, A.-M., Majda, M., Baisa, G., Bednarek, S. Y., Robert, S., Audenaert, D., Testerink, C., Munnik, T., Van Damme, D., Schumacher, K., Winne, J., Friml, J., Verstreken, P., and Russinova, E. (2016) Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification, Nat. Commun., 7, 11710, https://doi.org/10.1038/ncomms11710.
  179. Cardoso, R. M. S., Filipe, H. A. L., Gomes, F., Moreira, N. D., Vaz, W. L. C., and Moreno, M. J. (2010) Chain length effect on the binding of amphiphiles to serum albumin and to POPC bilayers, J. Phys. Chem. B, 114, 16337-16346, https://doi.org/10.1021/jp105163k.
  180. Denisov, S. S., Kotova, E. A., Khailova, L. S., Korshunova, G. A., and Antonenko, Y. N. (2014) Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria, Bioelectrochemistry, 98, 30-38, https://doi.org/10.1016/j.bioelechem.2014.02.002.
  181. Antonenko, Y. N., Denisov, S. S., Khailova, L. S., Nazarov, P. A., Rokitskaya, T. I., Tashlitsky, V. N., Firsov, A. M., Korshunova, G. A., and Kotova, E. A. (2017) Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and antibacterial agents: involvement of membrane proteins in the uncoupling action, Biochim. Biophys. Acta Biomembr., 1859, 377-387, https://doi.org/10.1016/j.bbamem.2016.12.014.
  182. Rebhahn, V. I. C., Saoud, M., Winterhalter, M., Schanbacher, F., Jobst, M., Rulz, R., Sonntag, A., Kollatz, J., Sprengel, R., Donovan, S. F., Del Favero, G., Rennert, R., and Niedermeyer, T. H. J. (2025) Aetokthonotoxin, the causative agent of vacuolar myelinopathy, uncouples oxidative phosphorylation due to protonophore activity, Chem. Res. Toxicol., 38, 1495-1508, https://doi.org/10.1021/acs.chemrestox.5c00147.
  183. Figarola, J. L., Singhal, J., Tompkins, J. D., Rogers, G. W., Warden, C., Horne, D., Riggs, A. D., Awasthi, S., and Singhal, S. S. (2015) SR4 uncouples mitochondrial oxidative phosphorylation, modulates AMP-dependent kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling, and inhibits proliferation of HepG2 hepatocarcinoma cells, J. Biol. Chem., 290, 30321-30341, https://doi.org/10.1074/jbc.M115.686352.
  184. Wu, X., Judd, L. W., Howe, E. N. W., Withecombe, A. M., Soto-Cerrato, V., Li, H., Busschaert, N., Valkenier, H., Perez-Tomas, R., Sheppard, D. N., Jiang, Y.-B., Davis, A. P., and Gale, P. A. (2016) Nonprotonophoric electrogenic Cl transport mediated by valinomycin-like carriers, Chem., 1, 127-146, https://doi.org/10.1016/j.chempr.2016.04.002.
  185. Routaboul, J.-M., Taillandier, G., Ravanel, P., and Tissut, M. (1994) Potent non-protonophore uncouplers acting on natural and artificial membranes, Phytochemistry, 35, 553-559, https://doi.org/10.1016/S0031-9422(00)90560-0.
  186. York, E., McNaughton, D. A., Roseblade, A., Cranfield, C. G., Gale, P. A., and Rawling, T. (2022) Structure-activity relationship and mechanistic studies of bisaryl urea anticancer agents indicate mitochondrial uncoupling by a fatty acid-activated mechanism, ACS Chem. Biol., 17, 2065-2073, https://doi.org/10.1021/acschembio.1c00807.
  187. Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M., and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling, Mol. Cancer Ther., 7, 3129-3140, https://doi.org/10.1158/1535-7163.MCT-08-0013.
  188. Jian, C., Fu, J., Cheng, X., Shen, L.-J., Ji, Y.-X., Wang, X., Pan, S., Tian, H., Tian, S., Liao, R., Song, K., Wang, H.-P., Zhang, X., Wang, Y., Huang, Z., She, Z.-G., Zhang, X.-J., Zhu, L., and Hongliang, L. (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis, Cell Metab., 31, 892-908, https://doi.org/10.1016/j.cmet.2020.04.011.
  189. Ek, F., Blom, K., Selvin, T., Rudfeldt, J., Andersson, C., Senkowski, W., Brechot, C., Nygren, P., Larsson, R., Jarvius, M., and Fryknaes, M. (2022) Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma, Sci. Rep., 12, 8943, https://doi.org/10.1038/s41598-022-12519-4.
  190. Fox, M. A., and Hughes, A. K. (2004) Cage C–H⋯X interactions in solid-state structures of icosahedral carboranes, Coord. Chem. Rev., 248, 457-476, https://doi.org/10.1016/j.ccr.2003.10.002.
  191. Liberman, E. A., Topaly, V. P., and Silberstein, A. Y. (1970) Charged and neutral ion carriers through bimolecular phospholipid membranes, Biochim. Biophys. Acta, 196, 221-234, https://doi.org/10.1016/0005-2736(70)90010-6.
  192. Rokitskaya, T. I., Khailova, L. S., Makarenkov, A. V., Ol’shevskaya, V. A., Kalinin, V. N., and Antonenko, Y. N. (2016) Weak C–H acids as protonophores can carry hydrogen ions through lipid membranes and mitochondria: a case of o-carborane, Phys. Chem. Chem. Phys., 18, 16476-16482, https://doi.org/10.1039/C6CP02581A.
  193. Bregadze, V. I., Sivaev, I. B., and Glazun, S. A. (2006) Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents, Anticancer Agents Med. Chem., 6, 75-109, https://doi.org/10.2174/187152006776119180.
  194. Rokitskaya, T. I., Khailova, L. S., Makarenkov, A. V., Shunaev, A. V., Tatarskiy, V. V., Shtil, A. A., Ol’shevskaya, V. A., and Antonenko, Y. N. (2019) Carborane derivatives of 1,2,3-triazole depolarize mitochondria by transferring protons through the lipid part of membranes, Biochim. Biophys. Acta Biomembr., 1861, 573-583, https://doi.org/10.1016/j.bbamem.2018.12.009.
  195. Smejtek, P., Jayaweera, A. R., and Hsu, K. (1983) Electrical conductivity, transfer of hydrogen ions in lipid bilayer membranes and uncoupling effect induced by pentachlorobenzenethiol (pentachlorothiophenol), J. Membr. Biol., 76, 227-234, https://doi.org/10.1007/BF01870365.
  196. Terada, H., Uda, M., Kametani, F., and Kubota, S. (1978) Structural requirements of alkyl acyldithiocarbazates for the uncoupling of oxidative phosphorylation in mitochondria, Biochim. Biophys. Acta, 504, 237-247, https://doi.org/10.1016/0005-2728(78)90172-X.
  197. Schwaller, M. A., Allard, B., Lescot, E., and Moreau, F. (1995) Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria, J. Biol. Chem., 270, 22709-22713, https://doi.org/10.1074/jbc.270.39.22709.
  198. Auclair, C. (1987) Multimodal action of antitumor agents on DNA: the ellipticine series, Arch. Biochem. Biophys., 259, 1-14, https://doi.org/10.1016/0003-9861(87)90463-2.
  199. Khailova, L. S., Silachev, D. N., Rokitskaya, T. I., Avetisyan, A. V., Lyamzaev, K. G., Severina, I. I., Il’yasova, T. M., Gulyaev, M. V., Dedukhova, V. I., Trendeleva, T. A., Plotnikov, E. Y., Zvyagilskaya, R. A., Chernyak, B. V., Zorov, D. B., Antonenko, Y. N., and Skulachev, V. P. (2014) A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta, 1837, 1739-1747, https://doi.org/10.1016/j.bbabio.2014.07.006.
  200. Zorova, L. D., Pevzner, I. B., Khailova, L. S., Korshunova, G. A., Kovaleva, M. A., Kovalev, L. I., Serebryakova, M. V., Silachev, D. N., Sudakov, R. V., Zorov, S. D., Rokitskaya, T. I., Popkov, V. A., Plotnikov, E. Y., Antonenko, Y. N., and Zorov, D. B. (2023) Mitochondrial ATP synthase and mild uncoupling by butyl ester of rhodamine 19, C4R1, Antioxidants, 12, 646, https://doi.org/10.3390/antiox12030646.
  201. Mai, M. S., and Allison, W. S. (1983) Inhibition of an oligomycin-sensitive ATPase by cationic dyes, some of which are atypical uncouplers of intact mitochondria, Arch. Biochem. Biophys., 221, 467-476, https://doi.org/10.1016/0003-9861(83)90165-0.
  202. Schwaller, M. A., Allard, B., Sureau, F., and Moreau, F. (1994) Protonation equilibrium of ellipticine bound to the energy-transducing membrane of mitochondria, J. Phys. Chem., 98, 4209-4211, https://doi.org/10.1021/j100067a002.
  203. Sureau, F., Moreau, F., Millot, J. M., Manfait, M., Allard, B., Aubard, J., and Schwaller, M. A. (1993) Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells, Biophys. J., 65, 1767-1774, https://doi.org/10.1016/S0006-3495(93)81273-6.
  204. Gear, A. R. (1974) Rhodamine 6G. A potent inhibitor of mitochondrial oxidative phosphorylation, J. Biol. Chem., 249, 3628-3637, https://doi.org/10.1016/S0021-9258(19)42620-3.
  205. Duvvuri, M., Gong, Y., Chatterji, D., and Krise, J. P. (2004) Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60, J. Biol. Chem., 279, 32367-32372, https://doi.org/10.1074/jbc.M400735200.
  206. Milanova, D., Chambers, R. D., Bahga, S. S., and Santiago, J. G. (2011) Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis, Electrophoresis, 32, 3286-3294, https://doi.org/10.1002/elps.201100210.
  207. Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831-17840, https://doi.org/10.1074/jbc.M110.212837.
  208. Kalinovich, A. V., and Shabalina, I. G. (2015) Novel mitochondrial cationic uncoupler C4R1 is an effective treatment for combating obesity in mice, Biochemistry (Moscow), 80, 620-628, https://doi.org/10.1134/S0006297915050156.
  209. Luo, X., Qian, L., Xiao, Y., Tang, Y., Zhao, Y., Wang, X., Gu, L., Lei, Z., Bao, J., Wu, J., He, T., Hu, F., Zheng, J., Li, H., Zhu, W., Shao, L., Dong, X., Chen, D., Qian, X., and Yang, Y. (2019) A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens, Nat. Commun., 10, 258, https://doi.org/10.1038/s41467-018-08241-3.
  210. Nazarov, P. A., Maximov, V. S., Firsov, A. M., Karakozova, M. V., Panfilova, V., Kotova, E. A., Skulachev, M. V., and Antonenko, Y. N. (2024) Rhodamine 19 alkyl esters as effective antibacterial agents, Int. J. Mol. Sci., 25, 6137, https://doi.org/10.3390/ijms25116137.
  211. Pfeffermann, J., Yadav, R., Glasnov, T., Thorn-Seshold, O., and Pohl, P. (2025) Phototriggered proton-selective carrier currents through photoswitchable membranes, bioRxiv, https://doi.org/10.1101/2025.01.13.632814.
  212. Rottenberg, H. (1983) Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics, Proc. Natl. Acad. Sci. USA, 80, 3313-3317, https://doi.org/10.1073/pnas.80.11.3313.
  213. Dabadie, P., Bendriss, P., Erny, P., and Mazat, J.-P. (1987) Uncoupling effects of local anesthetics on rat liver mitochondria, FEBS Lett., 226, 77-82, https://doi.org/10.1016/0014-5793(87)80554-9.
  214. Terada, H., Shima, O., Yoshida, K., and Shinohara, Y. (1990) Effects of the local anesthetic bupivacaine on oxidative phosphorylation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions, J. Biol. Chem., 265, 7837-7842, https://doi.org/10.1016/S0021-9258(19)39006-4.
  215. Strichartz, G. R., Sanchez, V., Arthur, G. R., Chafetz, R., and Martin, D. (1990) Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pKa values of clinically used drugs, Anesth. Analg., 71, 158-170, https://doi.org/10.1213/00000539-199008000-00008.
  216. Sun, X., and Garlid, K. D. (1992) On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes, J. Biol. Chem., 267, 19147-19154, https://doi.org/10.1016/S0021-9258(18)41754-1.
  217. Fantin, V. R., Berardi, M. J., Scorrano, L., Korsmeyer, S. J., and Leder, P. (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth, Cancer Cell, 2, 29-42, https://doi.org/10.1016/S1535-6108(02)00082-X.
  218. Wang, J., He, H., Xiang, C., Fan, X.-Y., Yang, L.-Y., Yuan, L., Jiang, F.-L., and Liu, Y. (2018) Uncoupling effect of F16 is responsible for its mitochondrial toxicity and anticancer activity, Toxicol. Sci., 161, 431-442, https://doi.org/10.1093/toxsci/kfx218.
  219. Xu, J., He, H., Zhou, L. J., Liu, Y. Z., Li, D. W., Jiang, F. L., and Liu, Y. (2018) Pyridinium and indole orientation determines the mitochondrial uncoupling and anti-cancer efficiency of F16, Eur. J. Med. Chem., 154, 305-313, https://doi.org/10.1016/j.ejmech.2018.05.036.
  220. Stupnikova, T. V., Kalafat, V. N., Klyuev, N. A., Marshtupa, V. P., and Sagitullin, R. S. (1980) Vinylogous anhydro bases of pyridylindoles, Chem. Heterocycl. Compd., 16, 1031-1035, https://doi.org/10.1007/BF00496604.
  221. Dubinin, M. V., Nedopekina, D. A., Ilzorkina, A. I., Semenova, A. A., Sharapov, V. A., Davletshin, E. V., Mikina, N. V., Belsky, Y. P., Spivak, A. Yu., Akatov, V. S., Belosludtseva, N. V., Liu, J., and Belosludtsev, K. N. (2023) Conjugation of triterpenic acids of ursane and oleanane types with mitochondria-targeting cation F16 synergistically enhanced their cytotoxicity against tumor cells, Membranes, 13, 563, https://doi.org/10.3390/membranes13060563.
  222. Heise, N. V., Heisig, J., Meier, K., Csuk, R., and Mueller, T. (2024) F16 Hybrids derived from steviol or isosteviol are accumulated in the mitochondria of tumor cells and overcome drug resistance, Molecules, 29, 381, https://doi.org/10.3390/molecules29020381.
  223. Xing, W., Liu, G., Zhang, Y., Zhang, T., Lou, H., and Fan, P. (2024) Selective antitumor effect and lower toxicity of mitochondrion-targeting derivatization of triptolide, J. Med. Chem., 67, 1093-1114, https://doi.org/10.1021/acs.jmedchem.3c01508.
  224. Miao, H., Cui, W., Zhang, T., Zhang, Y., Zhang, J., Lou, H., and Fan, P. (2024) Mitochondrial targeting derivatives of honokiol enhanced selective antitumor activity in NCI-H446 cells and decreased in vivo toxicity in Caenorhabditis elegans, Eur. J. Med. Chem., 264, 115996, https://doi.org/10.1016/j.ejmech.2023.115996.
  225. Denisov, S. S., Kotova, E. A., Plotnikov, E. Y., Tikhonov, A. A., Zorov, D. B., Korshunova, G. A., and Antonenko, Y. N. (2014) A mitochondria-targeted protonophoric uncoupler derived from fluorescein, Chem. Commun., 50, 15366-15369, https://doi.org/10.1039/C4CC04996A.
  226. Rokitskaya, T. I., Terekhova, N. V., Khailova, L. S., Kotova, E. A., Plotnikov, E. Y., Zorov, D. B., Tatarinov, D. A., and Antonenko, Y. N. (2019) Zwitterionic protonophore derived from 2-(2-hydroxyaryl)alkenylphosphonium as an uncoupler of oxidative phosphorylation, Bioconjug. Chem., 30, 2435-2443, https://doi.org/10.1021/acs.bioconjchem.9b00516.
  227. Blaikie, F. H., Brown, S. E., Samuelsson, L. M., Brand, M. D., Smith, R. A., and Murphy, M. P. (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore, Biosci. Rep., 26, 231-243, https://doi.org/10.1007/s10540-006-9018-8.
  228. Antonenko, Y. N., Denisov, S. S., Silachev, D. N., Khailova, L. S., Jankauskas, S. S., Rokitskaya, T. I., Danilina, T. I., Kotova, E. A., Korshunova, G. A., Plotnikov, E. Y., and Zorov, D. B. (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuroand nephroprotector, Biochim. Biophys. Acta, 1860, 2463-2473, https://doi.org/10.1016/j.bbagen.2016.07.014.
  229. Iaubasarova, I. R., Khailova, L. S., Nazarov, P. A., Rokitskaya, T. I., Silachev, D. N., Danilina, T. I., Plotnikov, E. Y., Denisov, S. S., Kirsanov, R. S., Korshunova, G. A., Kotova, E. A., Zorov, D. B., and Antonenko, Y. N. (2020) Linking 7-nitrobenzo-2-oxa-1,3-diazole (NBD) to triphenylphosphonium yields mitochondria-targeted protonophore and antibacterial agent, Biochemistry (Moscow), 85, 1578-1590, https://doi.org/10.1134/S000629792012010X.
  230. Iaubasarova, I. R., Khailova, L. S., Firsov, A. M., Grivennikova, V. G., Kirsanov, R. S., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2020) The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler, PLoS One, 15, e0244499, https://doi.org/10.1371/journal.pone.0244499.
  231. Kirsanov, R. S., Khailova, L. S., Rokitskaya, T. I., Lyamzaev, K. G., Panteleeva, A. A., Nazarov, P. A., Firsov, A. M., Iaubasarova, I. R., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2024) Synthesis of triphenylphosphonium-linked derivative of 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) via knoevenagel reaction yields an effective mitochondria-targeted protonophoric uncoupler, ACS Omega, 9, 11551-11561, https://doi.org/10.1021/acsomega.3c08621.
  232. Terekhova, N. V., Khailova, L. S., Rokitskaya, T. I., Nazarov, P. A., Islamov, D. R., Usachev, K. S., Tatarinov, D. A., Mironov, V. F., Kotova, E. A., and Antonenko, Y. N. (2021) Trialkyl(vinyl)phosphonium chlorophenol derivatives as potent mitochondrial uncouplers and antibacterial agents, ACS Omega, 6, 20676-20685, https://doi.org/10.1021/acsomega.1c02909.
  233. Rokitskaya, T. I., Khailova, L. S., Strelnik, A. G., Kotova, E. A., Mironov, V. F., Tatarinov, D. A., and Antonenko, Y. N. (2025) Replacement of phenyl substituents at phosphorus by hexyl ones in 2-(2-hydroxyaryl)vinylphosphonium salts can tune the nature of the induced proton transport through lipid membranes, Biochim. Biophys. Acta Biomembr., 1867, 184417, https://doi.org/10.1016/j.bbamem.2025.184417.
  234. Listvan, V. N., and Listvan, V. V. (2003) Reactions of phosphorus ylides with acyl chlorides: pathways and preparative potential, Russ. Chem. Rev., 72, 705-713, https://doi.org/10.1070/RC2003v072n08ABEH000800.
  235. Kirsanov, R. S., Khailova, L. S., Rokitskaya, T. I., Iaubasarova, I. R., Nazarov, P. A., Panteleeva, A. A., Lyamzaev, K. G., Popova, L. B., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2023) Ester-stabilized phosphorus ylides as protonophores on bilayer lipid membranes, mitochondria and chloroplasts, Bioelectrochemistry, 150, 108369, https://doi.org/10.1016/j.bioelechem.2023.108369.
  236. Rokitskaya, T. I., Kirsanov, R. S., Khailova, L. S., Panteleeva, A. A., Lyamzaev, K. G., Korshunova, G. A., Kotova, E. A., and Antonenko, Y. N. (2024) Methylation of phenyl rings in ester-stabilized phosphorus ylides vastly enhances their protonophoric activity, Chembiochem., 25, e202300848, https://doi.org/10.1002/cbic.202300848.
  237. Fu, Y. Y., Zhang, M., Turner, N., Zhang, L. N., Dong, T. C., Gu, M., Leslie, S. J., Li, J. Y., Nan, F. J., and Li, J. (2013) A novel chemical uncoupler ameliorates obesity and related phenotypes in mice with diet-induced obesity by modulating energy expenditure and food intake, Diabetologia, 56, 2297-2307, https://doi.org/10.1007/s00125-013-2987-9.
  238. Ferguson, S. M. F., Estrada-O, S., and Lardy, H. A. (1971) Potassium-specific uncoupling by nigericin, J. Biol. Chem., 246, 5645-5652, https://doi.org/10.1016/S0021-9258(18)61855-1.
  239. Johnson, R. B., Feldott, G., and Lardy, H. A. (1950) The mode of action of the antibiotic, usnic acid, Arch. Biochem., 28, 317-323.
  240. Abo-Khatwa, A. N., Al-Robai, A. A., and Al-Jawhari, D. A. (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria, Nat. Toxins, 4, 96-102, https://doi.org/10.1002/19960402NT7.
  241. Antonenko, Y. N., Khailova, L. S., Rokitskaya, T. I., Nosikova, E. S., Nazarov, P. A., Luzina, O. A., Salakhutdinov, N. F., and Kotova, E. A. (2019) Mechanism of action of an old antibiotic revisited: role of calcium ions in protonophoric activity of usnic acid, Biochim. Biophys. Acta Bioenerg., 1860, 310-316, https://doi.org/10.1016/j.bbabio.2019.01.005.
  242. Graven, S. N., Estrada-O, S., and Lardy, H. A. (1966) Alkali metal cation release and respiratory inhibition induced by nigericin in rat liver mitochondria, Proc. Natl. Acad. Sci. USA, 56, 654-658, https://doi.org/10.1073/pnas.56.2.654.
  243. Toro, M., Gomez-Lojero, C., Montal, M., and Estrada-O, S. (1976) Charge transfer mediated by nigericin in black lipid membranes, J. Bioenerg., 8, 19-26, https://doi.org/10.1007/BF01559387.
  244. Markin, V. S., and Sokolov, V. S. (1990) A new concept of electrochemical membrane equlibrium coupled transport and membrane potential, Bioelectrochem. Bioenerg., 23, 1-16, https://doi.org/10.1016/0302-4598(90)80001-Y.
  245. Whitehouse, M. W., and Dean, P. D. G. (1965) Biochemical properties of anti-inflammatory drugs-V: uncoupling of oxidative phosphorylation by some γ-resorcyl and other dihydroxybenzol compounds, Biochem. Pharmacol., 14, 557-567, https://doi.org/10.1016/0006-2952(65)90228-5.
  246. Rokitskaya, T. I., Kotova, E. A., and Antonenko, Y. N. (2021) Anomalous potentials on bilayer lipid membranes in the presence of usnic acid: Markin–Sokolov versus Nernst–Donnan equilibrium, Bioelectrochemistry, 141, 107825, https://doi.org/10.1016/j.bioelechem.2021.107825.
  247. Andersen, O. S. (1984) Gramicidin channels, Annu. Rev. Physiol., 46, 531-548, https://doi.org/10.1146/annurev.ph.46.030184.002531.
  248. Woolley, G. A., and Wallace, B. A. (1992) Model ion channels – gramicidin and alamethicin, J. Membrane Biol., 129, 109-136, https://doi.org/10.1007/BF00219508.
  249. Andersen, O. S., and Koeppe, R. E. (1992) Molecular determinants of channel function, Physiol Rev., 72, S89-S158, https://doi.org/10.1152/physrev.1992.72.suppl_4.S89.
  250. Mitchell, P., and Moyle, J. (1967) Respiration-driven proton translocation in rat liver mitochondria, Biochem. J., 105, 1147-1162, https://doi.org/10.1042/bj1051147.
  251. Гринюс Л.Л., Даугелавичюс Р.Ю., Алькимавичюс Г.А. (1980) Исследование мембранного потенциала клеток Bacillus subtilis и Escherichia coli методом проникающих ионов, Биохимия, 45, 1609-1618.
  252. Matsuno-Yagi, A., and Hatefi, Y. (1989) Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis, Biochemistry, 28, 4367-4374, https://doi.org/10.1021/bi00436a037.
  253. Nishio, J. N., and Whitmarsh, J. (1991) Dissipation of the proton electrochemical potential in intact and lysed chloroplasts: I. The electrical potential, Plant Physiol., 95, 522-528, https://doi.org/10.1104/pp.95.2.522.
  254. Myers, V. B., and Haydon, D. A. (1972) Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity, Biochim. Biophys. Acta, 274, 313-322, https://doi.org/10.1016/0005-2736(72)90179-4.
  255. Sorochkina, A. I., Plotnikov, E. Y., Rokitskaya, T. I., Kovalchuk, S. I., Kotova, E. A., Sychev, S. V., Zorov, D. B., and Antonenko, Y. N. (2012) N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler, PLoS One, 7, e41919, https://doi.org/10.1371/journal.pone.0041919.
  256. David, J. M., and Rajasekaran, A. K. (2015) Gramicidin A: a new mission for an old antibiotic, J. Kidney Cancer VHL, 2, 15-24, https://doi.org/10.15586/jkcvhl.2015.21.
  257. Khailova, L. S., Rokitskaya, T. I., Kovalchuk, S. I., Kotova, E. A., Sorochkina, A. I., and Antonenko, Y. N. (2019) Role of mitochondrial outer membrane in the uncoupling activity of N-terminally glutamate-substituted gramicidin A, Biochim. Biophys. Acta Biomembr., 1861, 281-287, https://doi.org/10.1016/j.bbamem.2018.06.013.
  258. Haoyang, W.-W., Xiao, Q., Ye, Z., Fu, Y., Zhang, D.-W., Li, J., Xiao, L., Li, Z.-T., and Hou, J.-L. (2021) Gramicidin A-based unimolecular channel: cancer cell-targeting behavior and ion transport-induced apoptosis, Chem. Commun., 57, 1097-1100, https://doi.org/10.1039/D0CC08073J.
  259. Silachev, D. N., Khailova, L. S., Babenko, V. A., Gulyaev, M. V., Kovalchuk, S. I., Zorova, L. D., Plotnikov, E. Y., Antonenko, Y. N., and Zorov, D. B. (2014) Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria, Biochim. Biophys. Acta Gen. Subject, 1840, 3434-3442, https://doi.org/10.1016/j.bbagen.2014.09.002.
  260. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663-668, https://doi.org/10.1073/pnas.0910216107.
  261. Rokitskaya, T. I., Sumbatyan, N. V., Tashlitsky, V. N., Korshunova, G. A., Antonenko, Y. N., and Skulachev, V. P. (2010) Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes, Biochim. Biophys. Acta, 1798, 1698-1706, https://doi.org/10.1016/j.bbamem.2010.05.018.
  262. Lyamzaev, K. G., Pustovidko, A. V., Simonyan, R. A., Rokitskaya, T. I., Domnina, L. V., Ivanova, O. Yu., Severina, I. I., Sumbatyan, N. V., Korshunova, G. A., Tashlitsky, V. N., Roginsky, V. A., Antonenko, Y. N., Skulachev, M. V., Chernyak, B. V., and Skulachev, V. P. (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine, Pharm. Res., 28, 2883-2895, https://doi.org/10.1007/s11095-011-0504-8.
  263. Chernyak, B. V., Antonenko, Y. N., Domnina, L. V., Ivanova, O. Yu., Lyamzaev, K. G., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Trendeleva, T. A., and Zvyagilskaya, R. A. (2013) Novel penetrating cations for targeting mitochondria, Curr. Pharm. Des., 19, 2795-2806, https://doi.org/10.2174/1381612811319150015.
  264. Garlid, K. D., and Nakashima, R. A. (1983) Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs, J. Biol. Chem., 258, 7974-7980, https://doi.org/10.1016/S0021-9258(20)82015-8.
  265. Stark, G. (1980) Negative hydrophobic ions as transport-mediators for positive ions. Evidence for a carrier mechanism, Biochim. Biophys. Acta Biomembr., 600, 233-237, https://doi.org/10.1016/0005-2736(80)90428-9.
  266. Ahmed, I., and Krishnamoorthy, G. (1990) Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations, Biochim. Biophys. Acta, 1024, 298-306, https://doi.org/10.1016/0005-2736(90)90358-U.
  267. Kolajova, M., Antalik, M., and Sturdik, E. (1993) Study of the complex formation between amine local anesthetics and uncouplers of oxidative phosphorylation carbonyl cyanide phenylhydrazones, Gen. Physiol. Biophys., 12, 213-229.
  268. Antonenko, Y. N., Khailova, L. S., Knorre, D. A., Markova, O. V., Rokitskaya, T. I., Ilyasova, T. M., Severina, I. I., Kotova, E. A., Karavaeva, Y. E., Prikhodko, A. S., Severin, F. F., and Skulachev, V. P. (2013) Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria, PLoS One, 8, e61902, https://doi.org/10.1371/journal.pone.0061902.
  269. Wu, X., and Gale, P. A. (2016) Small-molecule uncoupling protein mimics: synthetic anion receptors as fatty acid-activated proton transporters, J. Am. Chem. Soc., 138, 16508-16514, https://doi.org/10.1021/jacs.6b10615.
  270. Antonenko, Y. N., Veselov, I. M., Rokitskaya, T. I., Vinogradova, D. V., Khailova, L. S., Kotova, E. A., Maltsev, A. V., Bachurin, S. O., and Shevtsova, E. F. (2024) Neuroprotective thiourea derivative uncouples mitochondria and exerts weak protonophoric action on lipid membranes, Chem. Biol. Interact., 402, 111190, https://doi.org/10.1016/j.cbi.2024.111190.
  271. York, E., McNaughton, D. A., Duman, M.-N., Gale, P. A., and Rawling, T. (2023) Fatty acid-activated proton transport by bisaryl anion transporters depolarises mitochondria and reduces the viability of MDA-MB-231 breast cancer cells, Biomolecules, 13, 1202, https://doi.org/10.3390/biom13081202.
  272. Shkinev, A. V., Gagelgans, A. I., Tashmukhamedov, B. A., and Miroshnikov, A. I. (1978) Effect of melittin from bee venom on mitochondrial functions [in Russian], Biokhimiia, 43, 1452-1457.
  273. Sholtz, K. F., Aliverdieva, D. A., and Kotelnikova, A. V. (1985) Action of alamethicin on the coupling membrane of mitochondria [in Russian], Dokl. Akad. Nauk SSSR, 283, 723-727.
  274. Hugosson, M., Andreu, D., Boman, H. G., and Glaser, E. (1994) Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import, Eur. J. Biochem., 223, 1027-1033, https://doi.org/10.1111/j.1432-1033.1994.tb19081.x.
  275. Diaz-Achirica, P., Prieto, S., Ubach, J., Andreu, D., Rial, E., and Rivas, L. (1994) Permeabilization of the mitochondrial inner membrane by short cecropin-A-melittin hybrid peptides, Eur. J. Biochem., 224, 257-263, https://doi.org/10.1111/j.1432-1033.1994.tb20019.x.
  276. Aliverdieva, D., Mamaev, D., Snezhkova, L., and Sholtz, C. (2012) Evaluation of molecularity of rate-limiting step of pore formation by antimicrobial peptides studied using mitochondria as a biosensor, Toxicol In Vitro, 26, 939-949, https://doi.org/10.1016/j.tiv.2012.04.006.
  277. Lees, H. (1967) The effects of laurylamine on respiration and related reactions of liver mitochondria in vitro, Biochim. Biophys. Acta, 131, 310-316, https://doi.org/10.1016/0005-2728(67)90144-2.
  278. Bragadin, M., and Dell’Antone, P. (1996) Mitochondrial bioenergetics as affected by cationic detergents, Arch. Environ. Contam. Toxicol., 30, 280-284, https://doi.org/10.1007/BF00215809.
  279. Bragadin, M., Moret, I., Piazza, R., Grasso, M., and Manente, S. (2002) The interactions of cetyltrimethylammonium with mitochondria: an uncoupler or a detergent? Chemosphere, 46, 219-223, https://doi.org/10.1016/S0045-6535(01)00095-9.
  280. Bangham, J. A., and Lea, E. J. (1978) The interaction of detergents with bilayer lipid membranes, Biochim. Biophys. Acta, 511, 388-396, https://doi.org/10.1016/0005-2736(78)90275-4.
  281. Kondrashov, O. V., and Akimov, S. A. (2023) Alteration of average thickness of lipid bilayer by membrane-­deforming inclusions, Biomolecules, 13, 1731, https://doi.org/10.3390/biom13121731.
  282. Antonenko, Y. N., Rokitskaya, T. I., Cooper, A. J. L., and Krasnikov, B. F. (2010) Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels, J. Bioenerg. Biomembr., 42, 151-163, https://doi.org/10.1007/s10863-010-9271-1.
  283. Sokolov, S., Zyrina, A., Akimov, S., Knorre, D., and Severin, F. (2023) Toxic effects of penetrating cations, Membranes, 13, 841, https://doi.org/10.3390/membranes13100841.
  284. Terada, H., Nagamune, H., Osaki, Y., and Yoshikawa, K. (1981) Specific requirement for inorganic phosphate for induction of bilayer membrane conductance by the cationic uncoupler carbocyanine dye, Biochim. Biophys. Acta, 646, 488-490, https://doi.org/10.1016/0005-2736(81)90320-5.
  285. Ter Welle, H. F., and Slater, E. C. (1967) Uncoupling of respiratory-chain phosphorylation by arsenate, Biochim. Biophys. Acta, 143, 1-17, https://doi.org/10.1016/0005-2728(67)90104-1.
  286. Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100-124, https://doi.org/10.1016/S0005-2728(97)00091-1.
  287. Wallace, K. B., and Starkov, A. A. (2000) Mitochondrial targets of drug toxicity, Annu. Rev. Pharmacol. Toxicol., 40, 353-388, https://doi.org/10.1146/annurev.pharmtox.40.1.353.
  288. Sherman, J. K. (2025) Correlation in ultrastructural cryoinjury of mitochondria with aspects of their respiratory function, Exp. Cell Res., 66, 378-384, https://doi.org/10.1016/0014-4827(71)90691-4.
  289. Guengerich, F. P. (2008) Cytochrome p450 and chemical toxicology, Chem. Res. Toxicol., 21, 70-83, https://doi.org/10.1021/tx700079z.
  290. Rowland, A., Miners, J. O., and Mackenzie, P. I. (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification, Int. J. Biochem. Cell Biol., 45, 1121-1132, https://doi.org/10.1016/j.biocel.2013.02.019.
  291. Bock, K. W. (2014) Homeostatic control of xenoand endobiotics in the drug-metabolizing enzyme system, Biochem. Pharmacol., 90, 1-6, https://doi.org/10.1016/j.bcp.2014.04.009.
  292. Gamage, N., Barnett, A., Hempel, N., Duggleby, R. G., Windmill, K. F., Martin, J. L., and McManus, M. E. (2006) Human sulfotransferases and their role in chemical metabolism, Toxicol. Sci., 90, 5-22, https://doi.org/10.1093/toxsci/kfj061.
  293. Josephy, P. D. (2010) Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology, Hum. Genomics Proteomics, 2010, 876940, https://doi.org/10.4061/2010/876940.
  294. Sim, E., Westwood, I., and Fullam, E. (2007) Arylamine N-acetyltransferases, Expert. Opin. Drug Metab. Toxicol., 3, 169-184, https://doi.org/10.1517/17425255.3.2.169.
  295. Mato, J. M., Martinez-Chantar, M. L., and Lu, S. C. (2013) S-adenosylmethionine metabolism and liver disease, Ann. Hepatol., 12, 183-189, https://doi.org/10.1016/S1665-2681(19)31355-9.
  296. Jiang, A., Chen, G., Xu, J., Liu, Y., Zhao, G., Liu, Z., Chen, T., Li, Y., and James, T. D. (2019) Ratiometric two-photon fluorescent probe for in situ imaging of carboxylesterase (CE)-mediated mitochondrial acidification during medication, Chem. Commun., 55, 11358-11361, https://doi.org/10.1039/C9CC05759E.
  297. Miwa, S., Treumann, A., Bell, A., Vistoli, G., Nelson, G., Hay, S., and von Zglinicki, T. (2016) Carboxylesterase converts Amplex red to resorufin: implications for mitochondrial H2O2 release assays, Free Radic. Biol. Med., 90, 173-183, https://doi.org/10.1016/j.freeradbiomed.2015.11.011.
  298. Cooper, A. J. L., and Hanigan, M. H. (2018) Metabolism of glutathione S-conjugates: multiple pathways, Comprehens. Toxicol., 10, 406, https://doi.org/10.1016/B978-0-12-801238-3.01973-5.
  299. Sidhu, R. S., and Blair, A. H. (1975) Human liver aldehyde dehydrogenase. Esterase activity, J. Biol. Chem., 250, 7894-7898, https://doi.org/10.1016/S0021-9258(19)40899-5.
  300. Zemaitis, M. A., and Greene, F. E. (1976) Impairment of hepatic microsomal and plasma esterases of the rat by disulfiram and diethyldithiocarbamate, Biochem. Pharmacol., 25, 453-459, https://doi.org/10.1016/0006-2952(76)90349-X.
  301. Nousiainen, U., and Torronen, R. (1984) Differentiation of microsomal and cytosolic carboxylesterases in the rat liver by in vivo and in vitro inhibition, Gen. Pharmacol., 15, 223-227, https://doi.org/10.1016/0306-3623(84)90163-0.
  302. Buechel, K. H., and Schaefer, G. (1970) 2-Anilinothiophenes as uncouplers of oxidative phosphorylation in mitochondria [in German], Z. Naturforsch., 25 b, 1465-1474, https://doi.org/10.1515/znb-1970-1232.
  303. Skulachev, V. P., Vyssokikh, M. Y., Chernyak, B. V., Mulkidjanian, A. Y., Skulachev, M. V., Shilovsky, G. A., Lyamzaev, K. G., Borisov, V. B., Severin, F. F., and Sadovnichii, V. A. (2023) Six functions of respiration: isn’t it time to take control over ROS production in mitochondria, and aging along with it? Int. J. Mol. Sci., 24, 12540, https://doi.org/10.3390/ijms241612540.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).