COMPARATIVE ANALYSIS OF THE RNA-CHROMATIN INTERACTOME DATA: RESOLUTION, COMPLETENESS, AND SPECIFICITY OF DATA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two types of experiments are used to study RNA-chromatin interactions: a search for the interactome of individual RNAs (“one-to-all” or OTA) and a genome-wide search for contacts of all RNAs (“all-to-all” or ATA). A comparative analysis of ATA and OTA data revealed their fundamental differences in resolution, completeness, and specificity. OTA data provide high resolution (~1000 bp) and reproducibility (~90%), serving as a “gold standard”. In contrast, ATA data have lower resolution (~5000 bp), and their reproducibility (<10%) is critically dependent on the protocol, with the two-step fixation using disuccinimidyl glutarate and formaldehyde (GRID-seq) showing a clear advantage over formaldehyde alone. The introduced “chromatin potential” metric and filtering for BaRDIC peaks effectively isolate the specific signal. This work proposes a strategy for reliable interactome analysis: combining the selection of RNAs based on chromatin potential with the use of concordant contacts from peaks.

About the authors

G. K Ryabykh

Lomonosov Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: ryabykhgrigory@gmail.com
119234 Moscow, Russia; 119991 Moscow, Russia

A. I Nikolskaya

Lomonosov Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

119234 Moscow, Russia; 119991 Moscow, Russia

L. D Garkul

Lomonosov Moscow State University

119234 Moscow, Russia

A. A Mironov

Lomonosov Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

119234 Moscow, Russia; 119991 Moscow, Russia

References

  1. Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger, M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J. B., Lee, J. T., Mendell, J. T., Mercer, T. R., Moore, K. J., Nakagawa, S., Rinn, J. L., Spector, D. L., et al. (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations, Nat. Rev. Mol. Cell Biol., 24, 430-447, https://doi.org/10.1038/s41580-022-00566-8.
  2. Engreitz, J. M., Pandya-Jones, A., McDonel, P., Shishkin, A., Strokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E. S., Plath, K., and Guttman, M. (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome, Science, 341, 1-8, https://doi.org/10.1126/science.1237973.
  3. Simon, M. D., Wang, C. I., Kharchenko, P. V., West, J. A., Chapman, B. A., Alekseyenko, A. A., Borowsky, M. L., Kuroda, M. I., and Kingston, R. E. (2011) The genomic binding sites of a noncoding RNA, Proc. Natl. Acad. Sci. USA, 108, 20497-20502, https://doi.org/10.1073/pnas.1113536108.
  4. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., and Chang, H. Y. (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions, Mol. Cell, 44, 667-678, https://doi.org/10.1016/j.molcell.2011.08.027.
  5. Quinn, J. J., Ilik, I. A., Qu, K., Georgiev, P., Chu, C., Akhtar, A., and Chang, H. Y. (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification, Nat. Biotechnol., 32, 933-940, https://doi.org/10.1038/nbt.2943.
  6. Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S., Reinius, B., Mitra, S., Mohammed, A., James, A. R., Hoberg, E., Moustakas, A., Gyllenstein, U., Jones, S. J., Gustafsson, C. M., Sims, A. H., Westerlund, F., Gorab, E., and Kanduri, C. (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures, Nat. Commun., 6, 1-17, https://doi.org/10.1038/ncomms8743.
  7. Chu, H. P., Clitientes-Rojas C., Kesner, B., Aeby, E., Lee, H.-G., Wei, C., Oh, H. J., Boukhali, M., et al. (2017) TERRA RNA antagonizes ATRX and protects telomeres, Cell, 170, 86-101, https://doi.org/10.1016/j.cell.2017.06.017.
  8. Sridhar, B., Rivas-Astroza, M., Nguyen, T. C., Chen, W., Yan, Z., Cao, X., Hebert, L., and Zhong, S. (2017) Systematic mapping of RNA-chromatin interactions in vivo, Curr. Biol., 27, 602-609, https://doi.org/10.1016/j.cub.2017.01.011.
  9. Li, X., Zhou, B., Chen, L., Gou, L. T., Li, H., and Fu, X. D. (2017) GRID-seq reveals the global RNA-chromatin interactome, Nat. Biotechnol., 35, 940-950, https://doi.org/10.1038/nbt.3968.
  10. Bell, J. C., Jukam, D., Teran, N. A., Risca, V. I., Smith, O. K., Johnson, W. L., Skotheim, J. M., Greenleaf, W. J., and Straight, A. F. (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts, Elife, 7, e27024, https://doi.org/10.7554/eLife.27024.
  11. Limouse, C., Smith, O. K., Jukam, D., Fryer, K. A., Greenleaf, W. J., and Straight, A. F. (2023) Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions, Nat. Commun., 14, 6073, https://doi.org/10.1038/s41467-023-41848-9.
  12. Yan, Z., Huang, N., Wu, W., Chen, W., Jiang, Y., Chen, J., Huang, X., Wen, X., Xu, J., Jin, Q., Zhang, K., Chen, Z., Chien, S., and Zhong, S. (2019) Genome-wide colocalization of RNA-DNA interactions and fusion RNA pairs, Proc. Natl. Acad. Sci. USA, 116, 3328-3337, https://doi.org/10.1073/pnas.1819788116.
  13. Bonetti, A., Agostini, F., Suzuki, A. M., Hashimoto, K., Pascarella, G., Gimenez, J., Roos, L., Nash, A. J., Ghilotti, M., Cameron, C. J. F., Valentine, M., Medvedeva, Y. A., Noguchi, S., Agirre, E., Kashi, K., Samudyata, Luginbühl, J., et al. (2020) RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions, Nat. Commun., 11, 1018, https://doi.org/10.1038/s41467-020-14337-6.
  14. Gavrilov, A. A., Zharikova, A. A., Galitsyna, A. A., Luzhin, A. V., Rubanova, N. M., Golov, A. K., Petrova, N. V., Logacheva, M. D., Kantidze, O. L., Ulianov, S. V., Magnitov, M. D., Mironov, A. A., and Razin, S. V. (2020) Studying RNA-DNA interactome by Rec-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics, Nucleic Acids Res., 48, 6699-6714, https://doi.org/10.1093/nar/gkaa457.
  15. Ryabykh, G. K., Mylarshchikov, D. E., Kuznetsov, S. V., Sigorskikh, A. I., Ponomareva, T. Y., Zharikova, A. A., and Mironov, A. A. (2022) RNA-chromatin interactome: What? Where? When? Mol. Biol., 56, 210-228, https://doi.org/10.31857/S002689842202015X.
  16. West, J. A., Davis, C. P., Sunwoo, H., Simon, M. D., Sadreyev, R. I., Wang, P. I., Tolstorukov, M. Y., and Kingston, R. E. (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites, Mol. Cell, 55, 791-802, https://doi.org/10.1016/j.molcell.2014.07.012.
  17. Lieberman-Aiden, E., L. van Berkum, N., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289-293, https://doi.org/10.1126/science.1181369.
  18. Hoffman, E. A., Frey, B. L., Smith, L. M., and Auble, D. T. (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes, J. Biol. Chem., 44, 26404-26411, https://doi.org/10.1074/jbc.R115.651679.
  19. Ryabykh, G. K., Kuznetsov, S. V., Korostelev, Y. D., Sigorskikh, A. I., Zharikova, A. A., and Mironov, A. A. (2023) RNA-Chrom: a manually curated analytical database of RNA-chromatin interactome, Database, 2023, baaa025, https://doi.org/10.1093/database/baaa025.
  20. Mylarshchikov, D. E., Nikolskaya, A. I., Bogomaz, O. D., Zharikova, A. A., and Mironov, A. A. (2024) BaRDIC: robust peak calling for RNA-DNA interaction data, NAR Genom. Bioinform., 6, lgae054, https://doi.org/10.1093/nargab/lgae054.
  21. Alberti, A., Belser, C., Engelen, S., Bertrand, L., Orvain, C., Brinas, L., Cruaud, C., Giraut, L., Silva, C., Firmo, C., Aury, J.-M., and Wincker, P. (2014) Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data, BMC Genomics, 15, 912, https://doi.org/10.1186/1471-2164-15-912.
  22. Lin, S.-L., Miller, J. D., and Ying, S.-Y. (2006) Intronic micrORNA (miRNA), J. Biomed. Biotechnol., 2006, 26818, https://doi.org/10.1155/JBB/2006/26818.
  23. Bergeron, D., Faucher-Giguère, L., Emmerichs, A.-K., Choquet, K., Song, K. S., Deschamps-Franceeur, G., Fafard-Couture, E., Rivera, A., Couture, S., Churchman, L. S., Heyd, F., Elela, S. A., and Scott, M. S. (2023) Intronic small nucleolar RNAs regulate host gene splicing through base pairing with their adjacent intronic sequences, Genome. Biol., 24, 160, https://doi.org/10.1186/s13059-023-03002-y.
  24. Nam, J.-W., Choi, S.-W., and You, B.-H. (2016) Incredible RNA: dual functions of coding and noncoding, Mol. Cells, 39, 367-374, https://doi.org/10.14348/moleells.2016.0039.
  25. Machyna, M., and Simon, M. D. (2018) Catching RNAs on chromatin using hybridization capture methods, Brief. Funct. Genomics, 17, 96-103, https://doi.org/10.1093/bfgp/eix038.
  26. Oh, H. J., Aguilar, R., Kesner, B., Lee, H.-G., Kriz, A. J., Chu, H.-P., and Lee, J. T. (2021) Jpx RNA regulates CTCF anchor site selection and formation of chromosome loops, Cell, 184, 6157-6173, https://doi.org/10.1016/j.cell.2021.11.012.
  27. Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., Chess, A., and Lawrence, J. B. (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles, Mol. Cell, 33, 717-726, https://doi.org/10.1016/j.molcel.2009.01.026.
  28. Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, A., Bubulya, P. A., Blencowe, B. J., Prasanth, S. G., and Prasanth, K. V. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation, Mol. Cell, 39, 925-938, https://doi.org/10.1016/j.molcel.2010.08.011.
  29. Cai, D., and Han, J.-D. J. (2021) Aging-associated IncRNAs are evolutionarily conserved and participate in NFkB signaling, Nat. Aging, 1, 438-453, https://doi.org/10.1038/s43587-021-00056-0.
  30. Merry, C. R., Forrest, M. E., Sabers, J. N., Beard, L., Gao X.-H., Hatzoglou, M., Jackson, M. W., Wang, Z., Markowitz, S. D., and Khalil, A. M. (2015) DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer, Hum. Mol. Genet., 24, 6240-6253, https://doi.org/10.1093/hmg/ddv343.
  31. Stitzinger, S. H., Sobrabi-Jahromi, S., and Soding, J. (2023) Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains, NAR Genom. Bioinform., 5, lqad057, https://doi.org/10.1093/nargab/lqad057.
  32. Khlebnikov, D. A., Nikolskaya, A. I., Zharikova, A. A., and Mironov, A. A. (2025) Comprehensive analysis of RNA-chromatin, RNA-, and DNA-protein interactions, NAR Genom. Bioinform., 7, lqaf010, https://doi.org/10.1093/nargab/lqaf010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).