ALPHA- AND GAMMA-SYNUCLEINS CONTROL ENERGY METABOLISM AND ACTIVITY OF XANTHIN OXIDASE IN BRAIN CELLS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of transmission and transformation of signal in the central nervous system causes large energy expenditures in brain cells, which leads to active energy metabolism with high consumption of glucose and oxygen. Production of reactive oxygen species (ROS) as a result of these processes participate in signal transduction in the cell, but overproduction of ROS leads to the development of oxidative stress. Oxidative stress and aggregation of the α-synuclein is a hallmark in the mechanism of neuronal loss in Parkinson's disease. However, much less is known about the physiological role of monomeric synucleins. Using acute brain slices and primary neuroglial co-cultures prepared from transgenic mice with knockout of α-, β-, and γ-synuclein genes, we studied the role of these proteins in ROS production and energy metabolism. We found that synuclein knockout results in reduced ROS production compared to wild-type cells. Xanthine oxidase (XO) inhibitor oxypurinol reduced ROS production in wild-type cells and β-synuclein knockout brain slices, while XO-dependent ROS was not inhibited in α- or γ-synuclein knockout slices, suggesting that these proteins may regulate this enzyme. Knockout of α- and γ-synucleins resulted in a decrease in mitochondrial membrane potential and a reduction in energy capacity (in the form of ATP), which may be one of the mechanisms of XO regulation by synucleins.

About the authors

A. A Fedulina

Orel State University named after I.S. Turgenev; Lobachevsky State University of Nizhny Novgorod

Oryol, Russia; Nizhny Novgorod, Russia

E. S Seryogina

Orel State University named after I.S. Turgenev

Oryol, Russia

A. M Krayushkina

Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Chernogolovka, Moscow Region, Russia

K. D Chaprov

Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Chernogolovka, Moscow Region, Russia

A. Y Vinokurov

Orel State University named after I.S. Turgenev

Email: vinokurovayu@oreluniver.ru
Oryol, Russia

A. Y Abramov

Orel State University named after I.S. Turgenev; UCL Queen Square Institute of Neurology

Oryol, Russia; London, UK

References

  1. Angelova, P. R., Esteras, N., and Abramov, A. Y. (2021) Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention, Med. Res. Rev., 41, 770-784, https://doi.org/10.1002/med.21712.
  2. Gleichmann, M., and Mattson, M. P. (2011) Neuronal calcium homeostasis and dysregulation, Antioxid. Redox. Signal., 14, 1261-1273, https://doi.org/10.1089/ars.2010.3386.
  3. Angelova, P. R., and Abramov, A. Y. (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration, FEBS Lett., 592, 692-702, https://doi.org/10.1002/1873-3468.12964.
  4. Gandhi, S., and Abramov, A. Y. (2012) Mechanism of oxidative stress in neurodegeneration, Oxid. Med. Cell. Longev., 2012, 428010, https://doi.org/10.1155/2012/428010.
  5. Burrage, E. N., Colbentz, T., Prabhu, S. S., Childers, R., Bryner, R. W., Lewis, S. E., DeVallance, E., Kelley, E. E., and Chandler, P. D. (2023) Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment, J. Cereb. Blood Flow Metab., 43, 905-920, https://doi.org/10.1177/0271678X231152551.
  6. Angelova, P. R., Myers, I., and Abramov, A. Y. (2023) Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources, Redox Biol., 60, 102598, https://doi.org/10.1016/j.redox.2022.102598.
  7. Abramov, A. Y., Scorziello, A., and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation, J. Neurosci., 27, 1129-1138, https://doi.org/10.1523/JNEUROSCI.4468-06.2007.
  8. Xia, Y., and Zweier, J. L. (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart, J. Biol. Chem., 270, 18797-18803, https://doi.org/10.1074/jbc.270.32.18797.
  9. Kinugasa, Y., Ogino, K., Furuse, Y., Shiomi, T., Tsutsui, H., Yamamoto, T., Igawa, O., Hisatome, I., and Shigemasa, C. (2003) Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts, Circ. J., 67, 781-787, https://doi.org/10.1253/circj.67.781.
  10. Thies, J. L., Willicott, K., Craig, M. L., Greene, M. R., DuGay, C. N., Caldwell, G. A., and Caldwell, K. A. (2023) Xanthine dehydrogenase is a modulator of dopaminergic neurodegeneration in response to bacterial metabolite exposure in C. elegans, Cells, 12, 1170, https://doi.org/10.3390/cells12081170.
  11. Abramov, A.Y., Potapova, E. V., Dremin, V. V., and Dunaev, A. V. (2020) Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration, Life (Basel), 10, 1-14, https://doi.org/10.3390/life10070101.
  12. Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., and Ghiglieri, V. (2023) Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction, Cell. Death. Dis., 14, 176, https://doi.org/10.1038/s41419-023-05672-9.
  13. Negi, S., Khurana, N., and Duggal, N. (2024) The misfolding mystery: α-synuclein and the pathogenesis of Parkinson's disease, Neurochem. Int., 177, 105760, https://doi.org/10.1016/j.neuint.2024.105760.
  14. Magistrelli, L., Contaldi, E., and Comi, C. (2021) The impact of SNCA variations and its product alpha-synuclein on non-motor features of Parkinson's disease, Life, 11, 804, https://doi.org/10.3390/life11080804.
  15. Guo, Y., Sun, Y., Song, Z., Zheng, W., Xiong, W., Yang, Y., Yuan, L., and Deng, H. (2021) Genetic analysis and literature review of SNCA variants in Parkinson's disease, Front. Aging Neurosci., 13, 648151, https://doi.org/10.3389/fnagi.2021.648151.
  16. Clayton, D. F., and George, J. M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease, Trends. Neurosci., 21, 249-254, https://doi.org/10.1016/S0166-2236(97)01213-7.
  17. Guschina, I. A., Ninkina, N., Roman, A., Pokrovskiy, M. V., and Buchman, V. L. (2021) Triple-knockout, synuclein-free mice display compromised lipid pattern, Molecules, 26, 1-22, https://doi.org/10.3390/molecules26113078.
  18. George, J. M. (2002) The synucleins, Genome Biol., 3, REVIEWS3002, https://doi.org/10.1186/gb-2001-3-1-reviews3002.
  19. Ninkina, N., Connor-Robson, N., Ustyugov, A. A., Tarasova, T. V., Shelkovnikova, T. A., and Buchman, V. L. (2015) A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression, Sci. Rep., 5, 1-6, https://doi.org/10.1038/srep16615.
  20. Kokhan, V. S., Van'kin, G. I., Bachurin, S. O., and Shamakina, I. Y. (2013) Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice, BMC Neurosci., 14, 53, https://doi.org/10.1186/1471-2202-14-53.
  21. Ninkina, N., Tarasova, T. V., Chaprov, K. D., Roman, A. Y., Kukharsky, M. S., Kolik, L. G., Ovchinnikov, R., Ustyugov, A. A., Durnev, A. D., and Buchman, V. L. (2020) Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice, Neurobiol. Aging, 91, 76-87, https://doi.org/10.1016/j.neurobiolaging.2020.02.026.
  22. Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A. M., Nie, E. H., Makani, S., Tian, N., Castillo, P. E., Buchman, V. L., and Chandra, S. S. (2010) αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction, Proc. Natl. Acad. Sci. USA, 107, 19573-19578, https://doi.org/10.1073/pnas.1005005107.
  23. Vorobyov, V., Deev, A., Sukhanova, I., Morozova, O., Oganesyan, Z., Chaprov, K., and Buchman, V. L. (2022) Loss of the synuclein family members differentially affects baseline- and apomorphine-associated EEG determinants in single-, double- and triple-knockout mice, Biomedicines, 10, 3128, https://doi.org/10.3390/biomedicines10123128.
  24. Furuhashi, M. (2020) New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity, Am. J. Physiol. Endocrinol. Metab., 319, E827-E834, https://doi.org/10.1152/ajpendo.00378.2020.
  25. Starr, L. A., McKay, L. E., Peter, K. N., Seyfarth, L. M., Berkowitz, L. A., Caldwell, K. A., and Caldwell, G. A. (2023) Attenuation of dopaminergic neurodegeneration in a C. elegans Parkinson's model through regulation of xanthine dehydrogenase (XDH-1) expression by the RNA editase, ADR-2, J. Dev Biol., 11, 20, https://doi.org/10.3390/jdb11020020.
  26. Ludtmann, M. H. R., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L., and Abramov, A. Y. (2016) Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase, J. Neurosci., 36, 10510-10521, https://doi.org/10.1523/JNEUROSCI.1659-16.2016.
  27. Ludtmann, M. H. R., Angelova, P. R., Horrocks, M. H., Choi, M. L., Rodrigues, M., Baev, A. Y., Berezhnov, A. V., Yao, Z., Little, D., Banushi, B., Al-Menhali, A. S., Ranasinghe, R. T., Whiten, D. R., Yapom, R., Dolt, K. S., Devine, M. J., Gissen, P., Kunath, T., Jaganjac, M., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2018) α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease, Nat. Commun., 9, 2293, https://doi.org/10.1038/s41467-018-04422-2.
  28. Abramov, A. Y., Berezhnov, A. V., Fedotova, E. I., Zinchenko, V. P., and Dolgacheva, L. P. (2017) Interaction of misfolded proteins and mitochondria in neurodegenerative disorders, Biochem. Soc. Trans., 45, 1025-1033, https://doi.org/10.1042/BST20170024.
  29. Deas, E., Cremades, N., Angelova, P. R., Ludtmann, M. H. R., Yao, Z., Chen, S., Horrocks, M. H., Banushi, B., Little, D., Devine, M. J., Gissen, P., Klenerman, D., Dobson, C.M., Wood, N. W., Gandhi, S., and Abramov, A. Y. (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease, Antioxid. Redox Signal., 24, 376-391, https://doi.org/10.1089/ars.2015.6343.
  30. Angelova, P. R., Choi, M.L., Berezhnov, A. V., Horrocks, M. H., Hughes, C. D., De, S., Rodrigues, M., Yapom, R., Little, D., Dolt, K. S., Kunath, T., Devine, M.J., Gissen, P., Shchepinov, M. S., Sylantyev, S., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2020) Alpha synuclein aggregation drives ferropiosis: an interplay of iron, calcium and lipid peroxidation, Cell Death Differ., 27, 2781-2796, https://doi.org/10.1038/s41418-020-0542-z.
  31. Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G., and Gutteridge, J. M. C. (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers, FEBS Lett., 213, 23-28, https://doi.org/10.1016/0014-5793(87)81458-8.
  32. Grootveld, M., Halliwell, B., and Moorhouse, C. P. (1987) Action of uric acid, allopurinol and oxypurinol on the myeloperoxidase-derived oxidant hypochlorous acid, Free Radic. Res. Commun., 4, 69-76, https://doi.org/10.3109/10715768709088090.
  33. Harrison, R. (2004) Physiological roles of xanthine oxidoreductase, Drug Metab. Rev., 363-375, https://doi.org/10.1081/DMR-120037569.
  34. Guschina, I., Millership, S., O'Donnell, V., Ninkina, N., Harwood, J., and Buchman, V. (2011) Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice, Lipids, 46, 121-130, https://doi.org/10.1007/s11745-010-3486-0.
  35. Millership, S., Ninkina, N., Rochford, J. J., and Buchman, V. L. (2013) γ-synuclein is a novel player in the control of body lipid metabolism, Adipocyte, 2, 276-278, https://doi.org/10.4161/adip.25162.
  36. Zhang, H., Kouadio, A., Cartledge, D., and Godwin, A. K. (2011) Role of gamma-synuclein in microtubule regulation, Exp. Cell. Res., 317, 1330-1339, https://doi.org/10.1016/j.yexcr.2010.10.013.
  37. Angelova, P. R., Esteras, N., Evans, J., Kostic, M., Melki, R., Prehn, J. H. M., Gandhi, S., Abramov, A. Y. (2025) α-synuclein fibrils per se but not α-synuclein seeded aggregation causes mitochondrial dysfunction and cell death in human neurons, Redox Biol., 86, 103817, https://doi.org/10.1016/j.redox.2025.103817.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).