The CYP74B34 Enzyme of Carrot (Daucus carota) with Double Hydroperoxyde Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The lipoxygenase cascade of plants is a source of oxidized fatty acid derivatives, oxylipins, which play an important role in regulatory processes, as well as in the formation of responses to stress factors. One of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPL, synonym “hemiacetal synthase”) of the CYP74B subfamily. This work described the discovery and cloning of the CYP74B34 gene of the carrot (Daucus carota), as well as a description of the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13- hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic acids (9-HPOT and 13-HPOT, respectively). CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldoacids (HPL products). The transformation of 13-HPOD led to the formation of aldoacids (as main products) and epoxyalcohols (as minor products). Epoxyalcohols are products of the epoxyalcohol synthase (EAS) activity. At the same time, 9-HPOD conversion resulted in the formation of the epoxyalcohols as main products and aldoacid as the minor one. Thus, the CYP74B34 enzyme is the first enzyme with double HPL/EAS activity described in carrot. The presence of corresponding catalytic activities was confirmed by the results of analyses of oxylipin profiles of roots of young seedlings and mature plants. In addition, the work describes the results of substitution of amino acid residues in one of the catalytically essential sites.

Texto integral

Acesso é fechado

Sobre autores

Y. Toporkova

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: kibmail@kibb.knc.ru

Kazan Institute of Biochemistry and Biophysics

Rússia, 420111 Kazan

S. Gorina

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kibmail@kibb.knc.ru

Kazan Institute of Biochemistry and Biophysics

Rússia, 420111 Kazan

T. Iljina

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kibmail@kibb.knc.ru

Kazan Institute of Biochemistry and Biophysics

Rússia, 420111 Kazan

N. Lantsova

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kibmail@kibb.knc.ru

Kazan Institute of Biochemistry and Biophysics

Rússia, 420111 Kazan

A. Grechkin

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kibmail@kibb.knc.ru

Kazan Institute of Biochemistry and Biophysics

Rússia, 420111 Kazan

Bibliografia

  1. Grechkin, A. N. (1998) Recent developments in biochemistry of the plant lipoxygenase pathway, Prog. Lipid Res., 37, 317-352, https://doi.org/10.1016/S0163-7827(98)00014-9.
  2. Lee, D.-S., Nioche, P., Hamberg, M., and Raman, C. S. (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes, Nature, 455, 363-368, https://doi.org/10.1038/nature07307.
  3. Brodhun, F., and Feussner, I. (2011) Oxylipins in fungi, FEBS J., 278, 1047-1063, https://doi.org/10.1111/j.1742-4658.2011.08027.x.
  4. Barbosa, M., Valentão, P., and Andrade, P. B. (2016) Biologically active oxylipins from enzymatic and nonenzymatic routes in macroalgae, Mar. Drugs, 14, 23, https://doi.org/10.3390/md14010023.
  5. Jiang, Z.-D., and Gerwick, W. H. (1997) Novel oxylipins from the temperate red alga Polyneura latissima: evidence for an arachidonate 9(S)-lipoxygenase, Lipids, 32, 231-235, https://doi.org/10.1007/s11745-997-0029-9.
  6. Calder, P. C. (2020) Eicosanoids, Essays Biochem., 64, 423-441, https://doi.org/10.1042/EBC20190083.
  7. Halliwell, B., and Gutteridge, J. M. C. (2015) Free Radicals in Biology and Medicine, Oxford University Press, USA, https://doi.org/10.1093/acprof:oso/9780198717478.001.0001.
  8. Göbel, C., and Feussner, I. (2009) Methods for the analysis of oxylipins in plants, Phytochemistry, 70, 1485-1503, https://doi.org/10.1016/j.phytochem.2009.07.040.
  9. Kuhn, H., Banthiya, S., and Van Leyen, K. (2015) Mammalian lipoxygenases and their biological relevance, Biochim. Biophys. Acta, 1851, 308-330, https://doi.org/10.1016/j.bbalip.2014.10.002.
  10. Toporkova, Y. Y., Smirnova, E. O., and Gorina, S. S. (2024) Epoxyalcohol synthase branch of lipoxygenase cascade, Curr. Issues Mol. Biol., 46, 821-841, https://doi.org/10.3390/cimb46010053.
  11. Feussner, I., and Wasternack, C. (2002) The lipoxygenase pathway, Annu. Rev. Plant Biol., 53, 275-297, https://doi.org/10.1146/annurev.arplant.53.100301.135248.
  12. Nelson, D. R., Goldstone, J. V., and Stegeman, J. J. (2013) The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s, Philos. Trans. R. Soc. Lond. B Biol. Sci., 368, 20120474, https://doi.org/10.1098/rstb.2012.0474.
  13. Savchenko, T. V., Zastrijnaja, O. M., and Klimov, V. V. (2014) Oxylipins and plant abiotic stress resistance, Biochemistry (Moscow), 79, 362-375, https://doi.org/10.1134/S0006297914040051.
  14. Toporkova, Y. Y., Fatykhova, V. S., Gogolev, Y. V., Khairutdinov, B. I., Mukhtarova, L. S., and Grechkin, A. N. (2017) Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae, Biochim. Biophys. Acta, 1761, 1419-1428, https://doi.org/10.1016/j.bbalip.2016.11.007.
  15. Toporkova, Y. Y., Gorina, S. S., Mukhitova, F. K., Hamberg, M., Ilyina, T. M., Mukhtarova, L. S., and Grechkin, A. N. (2017) Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism, Biochim. Biophys. Acta, 1862(10 Pt A), 1099-1109, https://doi.org/10.1016/j.bbalip.2017.07.015.
  16. Горина С. С., Топоркова Я. Ю., Мухтарова Л. Ш., Гречкин А. Н. (2019) Цитохром CYP443C1 (клан CYP74) актинии Nematostella vectensis – первый фермент Metazoa, проявляющий двойную активность гидропероксидлиазы и эпоксиалкогольсинтазы, Доклады Академии наук, 486, 384-388, https://doi.org/10.31857/S0869-56524863384-388.
  17. Toporkova, Y. Y., Smirnova, E. O., Lantsova, N. V., Mukhtarova, L. S., and Grechkin, A. N. (2021) Detection of the first epoxyalcohol synthase/allene oxide synthase (CYP74 clan) in the lancelet (Branchiostoma belcheri, Chordata), Int. J. Mol. Sci., 22, 4737, https://doi.org/10.3390/ijms22094737.
  18. Smirnova, E. O., Lantsova, N. V., Hamberg, M., Toporkova, Y. Y., and Grechkin, A.N. (2024) The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins, Biochim. Biophys. Acta, 1869, 159507, https://doi.org/10.1016/ j.bbalip.2024.159507.
  19. Hansen, C. C., Nelson, D. R., Moller, B. L., Werck-Reichhart, D. (2021) Plant cytochrome P450 plasticity and evolution, Mol. Plant., 14, 1244-1265, https://doi.org/10.1016/j.molp.2021.06.028.
  20. Toporkova, Y. Y., Smirnova, E. O., Iljina, T. M., Mukhtarova, L. S., Gorina, S. S., and Grechkin, A. N. (2020) The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis, Phytochemistry, 179, 112512, https://doi.org/10.1016/j.phytochem.2020.112512.
  21. Ono, E., Handa, T., Koeduka, T., Toyonaga, H., Tawfik, M. M., Shiraishi, A., Murata, J., and Matsui, K. (2016) CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis), Plant Physiol. Biochem., 98, 112-118, https://doi.org/10.1016/j.plaphy.2015.11.016.
  22. Matsui, K., Shibutani, M., Hase, T., and Kajiwara, T. (1996) Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B), FEBS Lett., 394, 21-24, https://doi.org/10.1016/0014-5793(96)00924-6.
  23. Matsui, K., Ujita, C., Fujimoto, S.H., Wilkinson, J., Hiatt, B., Knauf, V., Kajiwara, T., and Feussner, I. (2000) Fatty acid 9-and 13-hydroperoxide lyases from cucumber, FEBS Lett., 481, 183-188, https://doi.org/10.1016/S0014-5793(00)01997-9.
  24. Matsui, K., Wilkinson, J., Hiatt, B., Knauf, V., and Kajiwara, T. (1999) Molecular cloning and expression of Arabidopsis fatty acid hydroperoxide lyase, Plant Cell Physiol., 40, 477-481, https://doi.org/10.1093/oxfordjournals.pcp.a029567.
  25. Matsui, K., Miyahara, C., Wilkinson, J., Hiatt, B., Knauf, V., and Kajiwara, T. (2000) Fatty acid hydroperoxide lyase in tomato fruits: cloning and properties of a recombinant enzyme expressed in Escherichia coli, Biosci. Biotechnol. Biochem., 64, 1189-1196, https://doi.org/10.1271/bbb.64.1189.
  26. Kandzia, R., Stumpe, M., Berndt, E., Szalata, M., Matsui, K., and Feussner, I. (2003) On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana, J. Plant Physiol., 160, 803-809, https://doi.org/10.1078/0176-1617-01026.
  27. Noordermeer, M. A., van Dijken, A. J., Smeekens, S. C., Veldink, G. A., and Vliegenthart, J. F. (2000) Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics, Eur. J. Biochem., 267, 2473-2482, https://doi.org/10.1046/j.1432-1327.2000.01283.x.
  28. Howe, G. A., Lee, G. I., Itoh, A., Li, L., and DeRocher, A. E. (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase, Plant Physiol., 123, 711-724, https://doi.org/10.1104/pp.123.2.711.
  29. Tijet, N., Waspi, U., Gaskin, D. J., Hunziker, P., Muller, B. L., Vulfson, E. N., Slusarenko, A., Brash, A. R., and Whitehead, I. M. (2000) Purification, molecular cloning, and expression of the gene encoding fatty acid 13-hydroperoxide lyase from guava fruit (Psidium guajava), Lipids, 35, 709-720, https://doi.org/10.1007/s11745-000-0577-z.
  30. Noordermeer, M. A., Veldink, G. A., and Vliegenthart, J. F. (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance, Chembiochem, 2, 494-504, https://doi.org/10.1002/1439-7633(20010803)2:7/8<494::AID-CBIC494>3.0.CO;2-1.
  31. Toporkova, Y. Y., Askarova, E. K., Gorina, S. S., Ogorodnikova, A. V., Mukhtarova, L. S., and Grechkin, A. N. (2020) Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants, Biochim. Biophys. Acta, 1865, 158743, https://doi.org/10.1016/j.bbalip.2020.158743.
  32. Tijet, N., Schneider, C., Muller, B. L., and Brash, A. R. (2001) Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids, Arch. Biochem. Biophys., 386, 281-289, https://doi.org/10.1006/abbi.2000.2218.
  33. Mita, G., Quarta, A., Fasano, P., De Paolis, A., Di Sansebastiano, G. P., Perrotta, C., Iannacone, R., Belfield, E., Hughes, R., Tsesmetzis, N., Casey, R., and Santino, A. (2005) Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies, J. Exp. Bot., 56, 2321-2333, https://doi.org/10.1093/jxb/eri225.
  34. Grechkin, A. N., Brühlmann, F., Mukhtarova, L. S., Gogolev, Y. V., and Hamberg, M. (2006) Hydroperoxide lyases (CYP74C and CYP74B) catalyze the hemolytic isomerization of fatty acid hydroperoxides into hemiacetals, Biochim. Biophys. Acta, 1761, 1419-1428, https://doi.org/10.1016/j.bbalip.2006.09.002.
  35. Hughes, R. K., Belfield, E. J., Muthusamay, M., Khan, A., Rowe, A., Harding, S. E., Fairhurst, S. A., Bornemann, S., Ashton, R., Thorneley, R. N. F., and Casey, R. (2006) Characterization of Medicago truncatula (barrel medic) hydroperoxide lyase (CYP74C3), a water-soluble detergent-free cytochrome P450 monomer whose biological activity is defined by monomer-micelle association, Biochem. J., 395, 641-652, https://doi.org/10.1042/BJ20051667.
  36. Wan, X.-H., Chen, S.-X., Wang, C.-Y., Zhang, R.-R., Cheng, S.-Q., Meng, H.-W., and Shen, X.-Q. (2013) Isolation, expression, and characterization of a hydroperoxide lyase gene from cucumber, Int. J. Mol. Sci., 14, 22082-22101, https://doi.org/10.3390/ijms141122082.
  37. Toporkova, Y. Y., Gorina, S. S., Bessolitsyna, E. K., Smirnova, E. O., Fatykhova, V. S., Brühlmann, F., Ilyina, T. M., Mukhtarova, L. S., and Grechkin, A. N. (2018) Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis, Biochim. Biophys. Acta, 1863, 369-378, https://doi.org/10.1016/j.bbalip.2018.01.002.
  38. Tanaka, M., Koeduka, T., and Matsui, K. (2021) Green leaf volatile-burst in Selaginella moellendorffii, Front Plant Sci., 12, 731694, https://doi.org/10.3389/fpls.2021.731694.
  39. Toporkova, Y. Y., Askarova, E. K., Gorina, S. S., Mukhtarova, L. S., and Grechkin, A. N. (2022) Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Identification of allene oxide synthase (CYP74L2) and hydroperoxide lyase (CYP74L1), Phytochemistry, 195, 113051, https://doi.org/10.1016/j.phytochem.2021.113051.
  40. Kuroda, H., Oshima, T., Kaneda, H., and Takashio, M. (2005) Identification and functional analyses of two cDNAs that encode fatty acid 9-/13-hydroperoxide lyase (CYP74C) in rice, Biosci. Biotechnol. Biochem., 69, 1545-1554, https://doi.org/10.1271/bbb.69.1545.
  41. Li, Y., and Wei, K. (2020) Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize, BMC Plant Biol., 20, 93, https://doi.org/10.1186/s12870-020-2288-7.
  42. Stumpe, M., Bode, J., Göbel, C., Wichard, T., Schaaf, A., Frank, W., Frank, M., Reski, R., Pohnert, G., and Feussner, I. (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens, Biochim. Biophys. Acta, 1761, 301-312, https://doi.org/10.1016/j.bbalip.2006.03.008.
  43. Gorina, S. S., Mukhitova, F. K., Ilyina, T. M., Toporkova, Y. Y., and Grechkin, A. N. (2019) Detection of unprecedented allene oxide synthase member of CYP74B subfamily: CYP74B33 of carrot (Daucus carota), Biochim. Biophys. Acta, 1864, 1580-1590, https://doi.org/10.1016/j.bbalip.2019.07.004.
  44. Wilson, R. A., Gardner, H. W., and Keller, N. P. (2001) Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi, Mol. Plant Microbe Iinteract., 14, 980-987, https://doi.org/10.1094/MPMI.2001.14.8.980.
  45. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870-1874, https://doi.org/10.1093/molbev/msw054.
  46. Zuckerkandl, E., and Pauling, L. (1965) Evolutionary divergence and convergence in proteins (Bryson, V., and Vogel, H. J., eds) Evolving Genes and Proteins, Academic Press, New York, pp. 97-166, https://doi.org/10.1016/B978-1-4832-2734-4.50017-6.
  47. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783-791, https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.
  48. Zoller, M. J., and Smith, M. (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA, Nucleic Acids Res., 10, 6487-6500, https://doi.org/10.1093/nar/10.20.6487.
  49. Toporkova, Y. Y., Gogolev, Y. V., Mukhtarova, L. S., and Grechkin, A. N. (2008) Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis, FEBS Lett., 582, 3423-3428, https://doi.org/10.1016/j.febslet.2008.09.005.
  50. Schenkman, J. B., and Jansson, I. (2006) Spectral analyses of cytochromes P450, Cytochrome P450 protocols, Humana Press, Totowa, NJ, pp. 11-18, https://doi.org/10.1385/1-59259-998-2:11.
  51. Werck-Reichhart, D., and Feyereisen, R. (2000) Cytochromes P450: a success story, Genome Biol., 1, REVIEWS3003, https://doi.org/10.1186/gb-2000-1-6-reviews3003.
  52. Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V., and Grechkin, A. N. (2011) Hydroperoxide lyase cascade in pea seedlings: non-volatile oxylipins and their age and stress dependent alterations, Phytochemistry, 72, 356-364, https://doi.org/10.1016/j.phytochem.2011.01.013

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Application
Baixar (557KB)
3. Fig. 1. Multiple alignment of partial amino acid sequences of the CYP74B34 enzyme and previously described CYP74 representatives: At – Arabidopsis thaliana, AtAOS, NP_199079.1, AtHPL Q9ZSY9.1; Lu – Linum usitatissimum, LuDES, ADP03054.2; Pg – Psidium guajava, PgHPL, AAK15070.1; Dc – Daucus carota, DcAOS WOH02659.1. The arrow indicates the “F/L toggle” site; the bending region of the I-helix is ​​boxed and numbered. The ERR triad and cysteine ​​in the heme-binding domain are indicated by ♦ and ●, respectively. The site within the PPV motif where substitutions were made in the CYP74B33 (DcAOS) and CYP74B34 enzyme sequences is indicated by an asterisk.

Baixar (701KB)
4. Fig. 2. Unrooted phylogenetic tree of the CYP74 clan. Subfamilies are circled and labeled A, B, C, etc.

Baixar (262KB)
5. Fig. 3. Dependence of the level of catalytic activity of the CYP74B34 enzyme on the pH value of the reaction mixture

Baixar (49KB)
6. Fig. 4. Structural formulas of the products of the catalytic action of the enzyme CYP74B34 of wild-type carrot

Baixar (146KB)
7. Fig. 5. Total ion current chromatograms of the products (Me/TMS after reduction with NaBH4) of the transformation of 9-HPOT (a), 9-HPOD (b), 13-HPOD (c), and 13-HPOT (d) with the participation of the recombinant wild-type CYP74B34 enzyme. 9-GOD – (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid; 9-GOT – (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid; 13-GOD – (9Z,11E,13S)-13-hydroxy-9,11-octadecadienoic acid; 13-GOT – (9Z, 11E,13S,15Z)-13-hydroxy-9,11,15-octadecatrienoic acid

Baixar (149KB)
8. Fig. 6. Total ion current chromatograms of the products (Me/TMS after reduction with NaBH4) of the transformation of 9-HPOD (a), 9-HPOT (b), 13-HPOD (c) and 13-HPOT (d) with the participation of the mutant form of CYP74B34_P355A. 9-HOD – (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid; 9-GOT – (9S,10E, 12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid; 13-HOD – (9Z,11E,13S)-13-hydroxy-9,11-octadecadienoic acid; 13-GOT – (9Z,11E,13S,15Z)-13-hydroxy-9,11,15-octadecatrienoic acid

Baixar (138KB)
9. Fig. 7. Total ion current chromatograms of the products (Me/TMS after reduction with NaBH4) of incubation of homogenates of young (a) and old (b) carrot plant roots with linoleic and α-linolenic acids. 1 – 9-hydroxynonanoic acid; 2 – 9,10-epoxy-11-hydroxy-12-octadecenoic acid; 9-GOD – (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid; 9-GOT – (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid; 18:2 – linoleic acid; 18:3 – α-linolenic acid

Baixar (103KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».