Новые молекулярные и фенотипические данные для вида Encyonema simile (Bacillariophyceae)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Encyonema simile Krammer – редкий вид, ранее отмеченный только в шести точках мирa. Клон этого вида был выделен из образца переувлажненной почвы, отобранного в июне 2021 г. в кластере “Забеловский”, Государственный природный заповедник “Бастак” (Еврейская автономная обл., Россия), и идентифицирован с помощью световой и сканирующей электронной микроскопии. Филогенетический анализ, основанный на сравнении последовательностей гена rbcL хлоропластной ДНК, показал принадлежность клона к роду Encyonema. Впервые для E. simile было обнаружено вегетативное укрупнение клеток, что является первым упоминанием данного процесса у рода Encyonema. Дополнен диагноз вида (уточнен верхний предел длины клетки, установлено большее количество штрихов и ареол в 10 мкм), получены первые молекулярные данные и описано строение цингулюма.

Об авторах

В. Б. Багмет

Федеральный научный центр биоразнообразия наземной биоты Восточной Азии

Email: chara1989@yandex.ru
Владивосток, Россия

В. Ю. Никулин

Федеральный научный центр биоразнообразия наземной биоты Восточной Азии

Владивосток, Россия

А. Ю. Никулин

Федеральный научный центр биоразнообразия наземной биоты Восточной Азии

Владивосток, Россия

Ш. Р. Абдуллин

Федеральный научный центр биоразнообразия наземной биоты Восточной Азии

Владивосток, Россия

Список литературы

  1. Багмет В.Б., Казарин В.М. 2021. Предварительные данные по флоре Bacillariophyta в почвах Cмирныховского района (остров Cахалин, Россия) // Комаровские чтения. № 69. С. 130. https://doi.org/10.25221/kl.69.9
  2. Багмет В.Б., Абдуллин Ш.P. 2023. Находки новых Bacillariophyta для России и острова Cахалин // Turczaninowia. T. 26. № 3. C. 108. https://doi.org/10.14258/turczaninowia.26.3.8
  3. Давидович Н.А., Давидович О.И. 2022. Репродуктивная биология диатомовых водорослей. Симферополь: ИТ “АРИАЛ”.
  4. Кузяхметов Г.Г., Дубовик И.Е. 2001. Методы изучения почвенных водорослей. Уфа: РИО БашГУ.
  5. Куликовский М.С., Глущенко А.М., Генкал С.И., Кузнецова И.В. 2016. Определитель диатомовых водорослей России. Ярославль: Филигрань.
  6. Медведева Л.А., Никулина Т.В. 2014. Каталог пресноводных водорослей Юга Дальнего Востока России. Владивосток: Дальнаука.
  7. Рощин А. М. 1994. Жизненные циклы диатомовых водорослей. Киев: Наук. думка.
  8. Хедаириа Т., Охапкин А.Г., Генкал С.И., Глущенко А.М., Куликовский М.С. Таксономический состав и экологическая характеристика диатомовых водорослей альгоценозов бентали устья крупной эвтрофно-гипертрофной реки (р. Ока, Россия) // Биология внутр. вод. 2022. № 4. С. 372. https://doi.org/10.31857/S032096522204012X
  9. Abdullin Sh.R., Nikulin A.Yu., Bagmet V.B. et al. 2021. New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia) // Phytotaxa V. 517. № 3. P. 221. https://doi.org/10.11646/phytotaxa.527.3.7
  10. Akaike H. 1974. A new look at the statistical model identification // IEEE Transactions on Automatic Control. V. 19. P. 716. https://doi.org/10.1109/TAC.1974.1100705
  11. Andersen R.A. 2005. Algal Culturing Techniques. Burlington: Elsevier Acad. Press.
  12. Anon. 2017. Inventaire national du Patrimoine naturel. Website. Paris: Muséum National d'Histoire Naturelle.
  13. Bagmet V.B., AbdullinSh.R., Mazina S.E. et al. 2020. Life cycle of Nitzschia palea (Kützing) W. Smith (Bacillariophyta) // Rus. J. Develop. Biol. V. 51. № 2. P. 106. https://doi.org/10.1134/S1062360420020022
  14. Bagmet V., Abdullin Sh., Nikulin A. et al. 2022. Biology, genetic diversity, and ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta) // Diversity. V. 14. P. 1133. https://doi.org/10.3390/d14121133
  15. Bahls L.L. 2014. New diatoms from the American West – a tribute to citizen science // Proceedings of the Academy of Natural Sciences of Philadelphia. V. 163. P. 61. https://doi.org/10.1635/053.163.0109
  16. Bahls L. 2021. Diatoms of Montana and western North America: catalog and atlas of species in the Montana diatom collection. V. 1. Academy of Natural Sciences of Philadelphia Special Publication V. 24. P. 1.
  17. Bonfield J.K., Smith K.F., Staden R. 1995. A new DNA sequence assembly program // Nucleic Acids Res. V. 23. P. 4992. https://doi.org/10.1093/nar/23.24.4992
  18. Darienko T., Pröschold T. 2019. Reevaluation and discovery of new species of the rare genus Watanabea and establishment of Massjukichlorella gen. nov. (Trebouxiophyceae, Chlorophyta) using an integrative approach // J. Phycology. V. 55. V. 493. https://doi.org/10.1111/jpy.12830
  19. Darriba D., Taboada G., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing // Nature Methods. V. 9. S. 772. https://doi.org/10.1038/nmeth.2109
  20. Daugbjerg N., Andersen R.A. 1997. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated // Mol. Biol. and Evol. V. 14. P. 1242. https://doi.org/10.1093/oxfordjournals.molbev.a025733
  21. Echt C.S., Erdahl L.A., McCoy T.J. 1992. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa // Genome. V. 35. P. 84. https://doi.org/10.1139/g92-014
  22. Galtier N., Gouy M., Gautier C. 1996. Seaview and phylo-win: two graphic tools for sequence alignment and molecular phylogeny // Comp. Appl. Biosci. V. 12. P. 543. https://doi.org/10.1093/bioinformatics/12.6.543
  23. Geitler L. 1973. Auxosporenbildung und Systematik bei pennaten Diatomeen und die Cytologie von Cocconeis-Sippen // Österreichische Botanische Zeitschrift. V. 122. P. 299.
  24. Glushchenko A.M., Maltsev Y.I., Kociolek J.P. et al. 2022. Molecular and morphological investigations of two giant diatom Cymbella species from the Transbaikal Area (Russia, Siberia) with comments on their distribution // Plants. V. 11. S. 2445. https://doi.org/10.3390/plants11182445
  25. Guiry M.D. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org 2024
  26. Hendey N.I. 1951. Littoral diatoms of Chichester harbour with special reference to fouling // J. R. Microsc. Soc. V. 71. № 1. S. 1. https://doi.org/10.1111/j.1365-2818.1951.tb01951.x
  27. Huelsenbeck J.P., Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees // Bioinformatics. V. 17. S. 754. https://doi.org/10.1093/bioinformatics/17.8.754
  28. Kaczmarska I., Ehrman J.M., Kelsey E.M. et al. 2023. Vegetative cell enlargement in selected centric diatom species – an alternative way to propagate an individual genotype // Europ. J. Phycol. V. 58. № 3. S. 315. https://doi.org/10.1080/09670262.2022.2112760
  29. Kezlya E., Glushchenko A., Maltsev Y. et al. 2021. Three new species of Placoneis Mereschkowsky (Bacillariophyceae: Cymbellales) with comments on cryptic diversity in the P. elginensis group // Water. V. 13. S. 3276. https://doi.org/10.3390/w13223276
  30. Komarek J., Kastovsky J., Mares J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach // Preslia. V. 86. № 4. P. 295.
  31. Kozlov A.M., Darriba D., Flouri T. et al. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference // Bioinformatics. V. 35. P. 4453. https://doi.org/10.1093/bioinformatics/btz305
  32. Krammer K. 1997. Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema Part // Bibliotheca Diatomologica. V. 36. S. 382.
  33. Kützing F.T. 1834. Synopsis diatomearum oder Versuch einer systematischen Zusammenstellung der Diatomeen // Linnaea. V. 8. P. 529.
  34. Mann D.G., Chepurnov V.A. 2004. What have the romans ever done for us? The past and future contribution of culture studies to diatom systematics // Nova Hedwigia. V. 79. P. 237. https://doi.org/10.1127/0029-5035/2004/0079-0237
  35. Mann D.G., Trobajo R., Sato S. et al. 2021. Ripe for reassessment: A synthesis of available molecular data for the speciose diatom family Bacillariaceae // Mol. Phylogen. Evol. V. 158.
  36. Mironov A., Chudaev D., Jüttner I. 2022. Cymbelloid diatoms from the River Adegoy, Krasnodar Territory, Russia, with a description of a new species Delicatophycus porosus sp. nov. (Cymbellaceae, Bacillariophyta) // Phytotaxa. V. 548. № 1. P. 26.
  37. Montoya-Moreno Y., Sala S., Vouilloud A. et al. 2013. Lista de las diatomeas de ambientes continentales de Colombia // Biota Colombiana. V. 14. № 2. P. 13.
  38. Nakov T., Ruck E.C., Galachyants Y. et al. 2014. Molecular phylogeny of the Cymbellales (Bacillariophyceae, Heterokontophyta) with a comparison of models for accommodating rate variation across sites // Phycologia. V. 53. P. 359. https://doi.org/10.2216/14-002.1
  39. Rambaut A. 2018. FigTree v. 1.4.4. https://tree.bio.ed.ac.uk/software/figtree/ Accessed on 10 October 2022.
  40. Rambaut A., Drummond A.J., Xie D. et al. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7 // System. Biol. syy032. https://doi.org/10.1093/sysbio/syy032
  41. Round F.E., Crawford R.M., Mann D.G. 1990. The Diatoms. Biology and morphology of the genera. Cambridge: Cambridge Univ. Press.
  42. Sevindik T.O., Hamilton P.B., Solak C.N. et al. 2023. Three new Nitzschia (Bacillariophyceae) species from highly acidic artificial lakes in Çanakkale, Türkiye // Water. V. 15. P. 3784. https://doi.org/10.3390/w15213784
  43. Stamatakis A., Hoover P., Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers // System. Biol. V. 57. Р. 758. https://doi.org/10.1080/10635150802429642
  44. Swofford D.L. 2002. PAUP* phylogenetic analysis using parsimony (and other methods). Version 4.0b10. Sunderland: Sinauer Associates, Inc. https://doi.org/ 10.1111/j.0014-3820.2002.tb00191.x
  45. Takano S., Akaneya K., Watanabe T., Katano N. 2009. Diatoms from Akita Prefecture, northern part of Japan, part II – Diatoms from Toyokawa River // Diatom. V. 25. P. 120.
  46. Xiao Qiao-Zhi., Guo Ji.-Shu., Tang Zheng-Bin et al. 2023. Navicula sinicomeniscus sp. nov. (Bacillariophyta; Naviculaceae), a new species from southwestern China // Phytotaxa. V. 591. P. 241. https://doi.org/10.11646/phytotaxa.591.4.1
  47. Vouilloud A., Sala S., Núñez-Avellaneda M. et al. 2010. Diatoms from the Colombian and Peruvian Amazon: The genera Encyonema, Encyonopsis and Gomphonema (Cymbellales: Bacillariophyceae) // Revista de biología tropical. V. 58. P. 45. https://doi.org/10.15517/rbt.v58i1.5193

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».