Description of plates with matrix Klein – Gordon equation
- Authors: Kniazeva K.S1, Shelest E.L.1, Shanin A.V.1
-
Affiliations:
- Lomonosov Moscow state university
- Issue: Vol 71, No 5 (2025)
- Pages: 625–632
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://ogarev-online.ru/0320-7919/article/view/376001
- DOI: https://doi.org/10.7868/S3034500625050015
- ID: 376001
Cite item
Abstract
About the authors
K. S Kniazeva
Lomonosov Moscow state university
Email: knyazevaks05@gmail.com
Physical Faculty Moscow, Russia
E. L. Shelest
Lomonosov Moscow state universityPhysical Faculty Moscow, Russia
A. V. Shanin
Lomonosov Moscow state universityPhysical Faculty Moscow, Russia
References
- Duhamel D., Mace B.R. and Brennan M.J. Finite element analysis of the vibrations of waveguides and periodic structures // J. Sound Vibr. 2006. V. 294. № 1–2. P. 205–220.
- Шанин А.В., Корольков А.И., Князева К.С. Об интегральных представлениях импульсного сигнала в волноводе // Акуст. журн. 2022. Т. 68. № 4. С. 361–372.
- Loveday P.W., Long C.S., Ramallo D.A. Mode repulsion of ultrasonic guided waves in rails // Ultrasonics. 2018. V. 84. P. 341–349.
- Sabini aux P. and Kropp W. A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground // J. Sound Vibr. 2010. V. 329. № 15. P. 3041–3064.
- Finnveden S. Evaluation of modal density and group velocity by a finite element method // J. Sound Vibr. 2004. V. 273. № 1–2. P. 51–75.
- Zharnikov T.V. and Syresin D.E. Repulsion of dispersion curves of quasidipole modes of anisotropic waveguides studied by finite element method // J. Acoust. Soc. Am. 2015. V. 137. № 6. P. 396–402.
- Fujisawa T. and Koshiba M. Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides // J. Lightwave Technology. 2002. V. 20. No 10. P. 1876–1884.
- Obayya S.S.A., Rahman B.M.A., El-Mikati H.A. Full-vectoral finite-element beam propagation method for nonlinear directional coupler devices // IEEE J. Quantum Electronics. 2000. V. 36. № 5. P. 556–562.
- Adami H.A. Waves in prismatic guides of arbitrary cross section // J. Applied Mechanics. 1973. December. P. 1067–1072.
- Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986.
- Reddy J.N. Theory and analysis of elastic plates and shells. CRC press, 2006.
- Павлов В.И., Сухоруков А.И. Переходное излучение акустических волн // Успехи физ. наук. 1985. Т. 147. № 1. P. 83–115.
- Lamb H. On waves in an elastic plate // Proc. Royal Soc. London. Series A, Containing papers of a mathematical and physical character. 1917. V. 93. No 648. P. 114–128.
- Ландау Л.Д., Лифшиц Е.М. Механика. М.: Наука, 1988.
- Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965.
- Mindlin R. Introduction to the mathematical theory of vibrations of elastic plates. World Scientific Publishing, 2006.
- Reddy J.N. and Wang C.M. An overview of the relationships between solutions of the classical and shear deformation plate theories // Composites Science and Technology. 2000. V. 60. № 12–13. P. 2327–2335.
- Stephen N.G. Mindlin plate theory: best shear coefficient and higher spectra validity // J. Sound Vibr. 1997. V. 202. № 4. P. 539–553.
- Dow J.O. and Byrd D.E. The identification and elimination of artificial stiffening errors in finite elements // Int. J. for Numerical Methods in Engineering. 1988. V. 26. № 3. P. 743–762.
Supplementary files


