SONIC BOOM CHARACTERISTICS UNDER STRONG ATMOSPHERIC TURBULENCE USING A SUPERSONIC CIVIL AIRCRAFT DEMONSTRATOR AS AN EXAMPLE
- Authors: Korunov A.O.1,2, Bakhne S.1,2, Usov L.A.1,2, Troshin A.I.1, Gorbovskoy V.S.1
-
Affiliations:
- Central Aerohydrodynamic Institute (TsAGI)
- Moscow Institute of Physics and Technology (MIPT)
- Issue: Vol 71, No 6 (2025)
- Pages: 835–854
- Section: АТМОСФЕРНАЯ И АЭРОАКУСТИКА
- URL: https://ogarev-online.ru/0320-7919/article/view/375995
- DOI: https://doi.org/10.7868/S3034500625060085
- ID: 375995
Cite item
Abstract
About the authors
A. O. Korunov
Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)
Email: korunov.ao@phystech.edu
Zhukovsky, Russia; Dolgoprudny, Russia
S. Bakhne
Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)
Email: bakhne@phystech.edu
Zhukovsky, Russia; Dolgoprudny, Russia
L. A. Usov
Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)Zhukovsky, Russia; Dolgoprudny, Russia
A. I. Troshin
Central Aerohydrodynamic Institute (TsAGI)Zhukovsky, Russia
V. S. Gorbovskoy
Central Aerohydrodynamic Institute (TsAGI)Zhukovsky, Russia
References
- Chernyshev S.L., Pogosyan M.A., Sypalo K.I. On ecologically-safe high-speed vehicles: conceptual design study of the next generation supersonic transport // Acta Astronaut. 2024. V. 216. P. 437–445.
- Han Z.H. et al. Recent progress of efficient low-boom design and optimization methods // Progress in Aerospace Sciences. 2024. V. 146. 101007.
- Руденко О.В., Маков Ю.Н. Звуковой удар: от физики нелинейных волн до акустической экологии (обзор) // Акуст. журн. 2021. Т. 67. № 1. С. 3–30.
- ГОСТ 2355279. Самолёты гражданской авиации. Допустимые уровни интенсивности звукового удара на местности и методы его измерения: межгосударственный стандарт: издание официальное / разработан Министерством авиационной промышленности СССР. Введ. 1980-07-01. М.: Издательство стандартов, 1979. 10 с.
- Rogers P.H., Maglieri D.J. Concorde booms and the mysterious east coast noises // Acoustics Today. 2015. V. 11. № 2. P. 34–42.
- Bonavolontà G., Lawson C., Riaz A. Review of Sonic Boom Prediction and Reduction Methods for Next Generation of Supersonic Aircraft // Aerospace. 2023. V. 10. № 11. P. 917.
- Jackson G., Leventhall H. Calculation of the perceived loudness of noise (PLdB) using Stevens’ method (Mark VII) // Appl. Acoust. 1973. V. 64. P. 23–34.
- Rallabhandi S.K. Propagation Analysis of the 3rd Sonic Boom Prediction Workshop Cases using sBOOM // AIAA. 2021. AIAA Scitech 2021 Forum. P. 230.
- Salamone J.A. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing. Dissertation, The Pennsylvania State University, University Park, Pennsylvania, 2013. 145 p.
- Stout T.A. Simulation of N-wave and shaped supersonic signature turbulent variations. Dissertation, The Pennsylvania State University, University Park, 2018.
- Whitham G.B. Linear and nonlinear waves, ser. Pure and applied mathematics. NewYork: Wiley, 1974. 636 p.
- Lomax H. The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas and Forces in Oblique Planes. National Advisory Committee for Aeronautics: Hampton VA, USA, 1955.
- Giblette T., Hunsaker D.F. Prediction of sonic boom loudness using high-order panel methods for the near-field solution // Proc. of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 2019. P. 0605.
- Ehlers F., Johnson F., Rubbert P. A higher order panel method for linearized supersonic flow // Proc. of the 9th Fluid and PlasmaDynamics Conference, Williamsburg , VA, USA, 1979. P. 381.
- Choi S., Alonso J.J., Kroo I.M. Two-level multifidelity design optimization studies for supersonic jets // J. Aircr. 2009. V. 46. P. 776–790.
- Cleveland R.O. Propagation of sonic boom through a real stratified atmosphere. Dissertation. University of Texas at Austin, 1995.
- Auger T. Modélisation et simulation numérique de la focalisation d’ondes de choc acoustiques en milieu en mouvement. Application à la focalisation du bang sonique en accélération. (Modeling and numerical simulation of the focusing of acoustic shock waves in a moving medium. Application to the focusing of sonic boom during acceleration.) Dissertation. Université Pierre & Marie Curie, Paris VI, Paris, France, 2001. 197 p. Translated by Wade L.
- Salomons E.M. Computational Atmospheric Acoustics. Kluwer Academic Publications, 2001.
- Гусев В.А. Искажение разрывных волн в среде с периодическим поперечным распределением неоднородности // Акуст. журн. 2010. Т. 56. № 3. С. 303–315.
- Chernyshev S.L., Gorbovskoy V.S., Kazhan А.V., Korunov А.О. Re-entry vehicle sonic boom issue: Modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astronautica. 2022. V. 194. P. 450–460.
- Dagrau F., Rénier M., Marchiano R., Coulouvrat F. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation // J. Acoust. Soc. Am. 2011. V. 130. № 1. P. 20–32.
- Кузнецов В.П. Уравнения нелинейной акустики // Акуст. журн. 1970. Т. 16. № 4. С. 548–553.
- Kraichnan R. Diffusion by a random velocity field // Physics of Fluids. 1970. V. 13. № 1. P. 22–31.
- Aver’yanov M.V. et al. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media // Acoust. Phys. 2006. V. 52. P. 623–632.
- Luquet D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom. Dissertation. Université Pierre et Marie Curie, Paris VI, 2016.
- Coulouvrat F. New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere // Wave Motion. 2012. V. 49. № 1. P. 50–63.
- Luquet D. et al. Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium // J. Comput. Phys. 2019. V. 379. P. 237–261.
- Руденко О.В., Сухорукова А.К., Сухоруков А.П. Уравнения высокочастотной нелинейной акустики неоднородных сред // Акуст. журн. 1994. Т. 40. № 2. С. 290–294.
- Kanamori M. et al. Numerical Evauation of Effect of Atmospheric Turbulence on Sonic Boom Observed in D-SEND#2 Flight Test // 55th AIAA Aerospace Sciences Meeting. Grapevine, TX : AIAA, 2017.
- Qiao J. et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach // Chinese J. Aeronautics. 2022. V. 35. № 9. P. 208–225.
- Yuldashev P.V. et al. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence // J. Acoust. Soc. Am. 2017. V. 142. № 6. P. 3402–3415.
- ГОСТ 440181. Атмосфера стандартная. Параметры: межгосударственный стандарт: издание официальное / разработан Государственным комитетом СССР по стандартам. Введ. 1982-07-01. М.: Издательство стандартов, 1981. 180 с.
- Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // Turbulence, heat and mass transfer. 2003. V. 4. № 1. P. 625–632.
- ГОСТ 31295.12005. Шум. Затухание звука при распространении на местности. Часть 1. Расчёт поглощения звука атмосферой: межгосударственный стандарт: издание официальное / Межгосударственный совет по стандартизации, метрологии и сертификации. М.: Стандартинформ, 2006. IV. 24 с.
- Bass H.E. et al. Atmospheric absorption of sound: Further developments // J. Acoust. Soc. Am. 1995. V. 97. № 1. P. 680–683.
- https://lbpw.larc.nasa.gov/
- Bailly C., Juvé D. A stochastic approach to compute subsonic noise using linearized Euler’s equations // 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, 1999.
- Wilson D.K. A three-dimensional correlation/spectral model for turbulent velocities in a convective boundary layer // Boundary-Layer Meteorology. 1997. V. 85. № 1. P. 35–52.
- Bradley K.A. et al. Sonic booms in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms // NASA Report NASA/CR–2020–220509. 2020.
- https://angms.science/doc/RM/randUnitVec.pdf
- Lee Y.S., Hamilton M.F. Time-domain modeling of pulsed finite-amplitude sound beams // J. Acoust. Soc. Am. 1995. V. 97. № 2. P. 906–917.
- Aver’yanov M., Blanc-Benon P., Cleveland R.O., Khokhlova V.A. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media // J. Acoust. Soc. Am. 2011. V. 129. № 4. P. 1760–1772.
- Bakhne S., Korunov A.O., Usov L.A. Modeling of Sonic Boom N-Wave Propagation through Atmospheric Turbulence Using Evolutionary Models // Math. Models Comput. Simul. 2024. V. 16. P. 76–95.
- Benzi M. et al. Decay bounds and O (n) algorithms for approximating functions of sparse matrices // Electron. Trans. Numer. Anal. 2007. V. 28. P. 16–39.
- Coulouvrat F. A quasi-analytical shock solution for general nonlinear progressive waves // Wave Motion. 2009. V. 46. № 2. P. 97–107.
- Юлдашев П.В., Карзова М.М., Хохлова В.А., Блан-Бенон Ф. Численное моделирование нелинейного параболического уравнения для анализа статистики воспринимаемого уровня шума волны звукового удара после прохождения турбулентного слоя атмосферы // Акуст. журн. 2021. Т. 67. № 1. С. 31–44.
- Zhang R., Zhang M., Shu C.W. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes // Communications in Computational Physics. 2011. V. 9. № 3. P. 807–827.
- Shu C., Gottlieb S., Ketcheson D. Strong stability preserving Runge–Kutta and multistep time discretizations // World Scientific. 2011. 184 рр.
- Shur M.L. et al. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow, turbulence and combustion. 2014. V. 93. № 1. P. 63–92.
- Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики // М.: Наука. 1975. 287 с.
- Ландау Л.Д. Об ударных волнах на далеких расстояниях от места их возникновения // Собрание трудов. Т. 1. М.: Наука, 1969. С. 504–512.
- Burgers J.M. A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics // Academic Press Inc. New York. Ed. by Richard von Mises and Theodore von Kármán. 1948. P. 171–199.
- Hunt F.V. Notes on the Exact Equations Governing the Propagation of Sound in Fluids // J. Acoust. Soc. Am. 1955. V. 2. P. 1019–1039.
- Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред. М.: Наука, 1980. 304 с.
Supplementary files


