SONIC BOOM CHARACTERISTICS UNDER STRONG ATMOSPHERIC TURBULENCE USING A SUPERSONIC CIVIL AIRCRAFT DEMONSTRATOR AS AN EXAMPLE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the wave equation exact within the framework of linear acoustics of moving media, a scalar equation on acoustic pressure in the atmospheric boundary layer is obtained. The main approximations for diffraction and turbulent pulsations transport effects are derived. Based on these, HOWARD and KZK-type models are developed. The two-dimentional KZK-type equation is applied to the problem of calculating the sonic boom characteristics from civil supersonic aircraft demostrator “Strizh” under development in TsAGI in conditions of strong velocity pulsations in atmospheric boundary layer. Grid and statistical convergence of simulation results is achieved. The three-step structure of the demonstrators pressure signature front shock leads to a small change in amplitude and a significant loudness reduction in PL metric compared to the results obtained for N-waves under similar conditions.

About the authors

A. O. Korunov

Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)

Email: korunov.ao@phystech.edu
Zhukovsky, Russia; Dolgoprudny, Russia

S. Bakhne

Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)

Email: bakhne@phystech.edu
Zhukovsky, Russia; Dolgoprudny, Russia

L. A. Usov

Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)

Zhukovsky, Russia; Dolgoprudny, Russia

A. I. Troshin

Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky, Russia

V. S. Gorbovskoy

Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky, Russia

References

  1. Chernyshev S.L., Pogosyan M.A., Sypalo K.I. On ecologically-safe high-speed vehicles: conceptual design study of the next generation supersonic transport // Acta Astronaut. 2024. V. 216. P. 437–445.
  2. Han Z.H. et al. Recent progress of efficient low-boom design and optimization methods // Progress in Aerospace Sciences. 2024. V. 146. 101007.
  3. Руденко О.В., Маков Ю.Н. Звуковой удар: от физики нелинейных волн до акустической экологии (обзор) // Акуст. журн. 2021. Т. 67. № 1. С. 3–30.
  4. ГОСТ 2355279. Самолёты гражданской авиации. Допустимые уровни интенсивности звукового удара на местности и методы его измерения: межгосударственный стандарт: издание официальное / разработан Министерством авиационной промышленности СССР. Введ. 1980-07-01. М.: Издательство стандартов, 1979. 10 с.
  5. Rogers P.H., Maglieri D.J. Concorde booms and the mysterious east coast noises // Acoustics Today. 2015. V. 11. № 2. P. 34–42.
  6. Bonavolontà G., Lawson C., Riaz A. Review of Sonic Boom Prediction and Reduction Methods for Next Generation of Supersonic Aircraft // Aerospace. 2023. V. 10. № 11. P. 917.
  7. Jackson G., Leventhall H. Calculation of the perceived loudness of noise (PLdB) using Stevens’ method (Mark VII) // Appl. Acoust. 1973. V. 64. P. 23–34.
  8. Rallabhandi S.K. Propagation Analysis of the 3rd Sonic Boom Prediction Workshop Cases using sBOOM // AIAA. 2021. AIAA Scitech 2021 Forum. P. 230.
  9. Salamone J.A. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing. Dissertation, The Pennsylvania State University, University Park, Pennsylvania, 2013. 145 p.
  10. Stout T.A. Simulation of N-wave and shaped supersonic signature turbulent variations. Dissertation, The Pennsylvania State University, University Park, 2018.
  11. Whitham G.B. Linear and nonlinear waves, ser. Pure and applied mathematics. NewYork: Wiley, 1974. 636 p.
  12. Lomax H. The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas and Forces in Oblique Planes. National Advisory Committee for Aeronautics: Hampton VA, USA, 1955.
  13. Giblette T., Hunsaker D.F. Prediction of sonic boom loudness using high-order panel methods for the near-field solution // Proc. of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 2019. P. 0605.
  14. Ehlers F., Johnson F., Rubbert P. A higher order panel method for linearized supersonic flow // Proc. of the 9th Fluid and PlasmaDynamics Conference, Williamsburg , VA, USA, 1979. P. 381.
  15. Choi S., Alonso J.J., Kroo I.M. Two-level multifidelity design optimization studies for supersonic jets // J. Aircr. 2009. V. 46. P. 776–790.
  16. Cleveland R.O. Propagation of sonic boom through a real stratified atmosphere. Dissertation. University of Texas at Austin, 1995.
  17. Auger T. Modélisation et simulation numérique de la focalisation d’ondes de choc acoustiques en milieu en mouvement. Application à la focalisation du bang sonique en accélération. (Modeling and numerical simulation of the focusing of acoustic shock waves in a moving medium. Application to the focusing of sonic boom during acceleration.) Dissertation. Université Pierre & Marie Curie, Paris VI, Paris, France, 2001. 197 p. Translated by Wade L.
  18. Salomons E.M. Computational Atmospheric Acoustics. Kluwer Academic Publications, 2001.
  19. Гусев В.А. Искажение разрывных волн в среде с периодическим поперечным распределением неоднородности // Акуст. журн. 2010. Т. 56. № 3. С. 303–315.
  20. Chernyshev S.L., Gorbovskoy V.S., Kazhan А.V., Korunov А.О. Re-entry vehicle sonic boom issue: Modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astronautica. 2022. V. 194. P. 450–460.
  21. Dagrau F., Rénier M., Marchiano R., Coulouvrat F. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation // J. Acoust. Soc. Am. 2011. V. 130. № 1. P. 20–32.
  22. Кузнецов В.П. Уравнения нелинейной акустики // Акуст. журн. 1970. Т. 16. № 4. С. 548–553.
  23. Kraichnan R. Diffusion by a random velocity field // Physics of Fluids. 1970. V. 13. № 1. P. 22–31.
  24. Aver’yanov M.V. et al. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media // Acoust. Phys. 2006. V. 52. P. 623–632.
  25. Luquet D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom. Dissertation. Université Pierre et Marie Curie, Paris VI, 2016.
  26. Coulouvrat F. New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere // Wave Motion. 2012. V. 49. № 1. P. 50–63.
  27. Luquet D. et al. Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium // J. Comput. Phys. 2019. V. 379. P. 237–261.
  28. Руденко О.В., Сухорукова А.К., Сухоруков А.П. Уравнения высокочастотной нелинейной акустики неоднородных сред // Акуст. журн. 1994. Т. 40. № 2. С. 290–294.
  29. Kanamori M. et al. Numerical Evauation of Effect of Atmospheric Turbulence on Sonic Boom Observed in D-SEND#2 Flight Test // 55th AIAA Aerospace Sciences Meeting. Grapevine, TX : AIAA, 2017.
  30. Qiao J. et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach // Chinese J. Aeronautics. 2022. V. 35. № 9. P. 208–225.
  31. Yuldashev P.V. et al. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence // J. Acoust. Soc. Am. 2017. V. 142. № 6. P. 3402–3415.
  32. ГОСТ 440181. Атмосфера стандартная. Параметры: межгосударственный стандарт: издание официальное / разработан Государственным комитетом СССР по стандартам. Введ. 1982-07-01. М.: Издательство стандартов, 1981. 180 с.
  33. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // Turbulence, heat and mass transfer. 2003. V. 4. № 1. P. 625–632.
  34. ГОСТ 31295.12005. Шум. Затухание звука при распространении на местности. Часть 1. Расчёт поглощения звука атмосферой: межгосударственный стандарт: издание официальное / Межгосударственный совет по стандартизации, метрологии и сертификации. М.: Стандартинформ, 2006. IV. 24 с.
  35. Bass H.E. et al. Atmospheric absorption of sound: Further developments // J. Acoust. Soc. Am. 1995. V. 97. № 1. P. 680–683.
  36. https://lbpw.larc.nasa.gov/
  37. Bailly C., Juvé D. A stochastic approach to compute subsonic noise using linearized Euler’s equations // 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, 1999.
  38. Wilson D.K. A three-dimensional correlation/spectral model for turbulent velocities in a convective boundary layer // Boundary-Layer Meteorology. 1997. V. 85. № 1. P. 35–52.
  39. Bradley K.A. et al. Sonic booms in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms // NASA Report NASA/CR–2020–220509. 2020.
  40. https://angms.science/doc/RM/randUnitVec.pdf
  41. Lee Y.S., Hamilton M.F. Time-domain modeling of pulsed finite-amplitude sound beams // J. Acoust. Soc. Am. 1995. V. 97. № 2. P. 906–917.
  42. Aver’yanov M., Blanc-Benon P., Cleveland R.O., Khokhlova V.A. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media // J. Acoust. Soc. Am. 2011. V. 129. № 4. P. 1760–1772.
  43. Bakhne S., Korunov A.O., Usov L.A. Modeling of Sonic Boom N-Wave Propagation through Atmospheric Turbulence Using Evolutionary Models // Math. Models Comput. Simul. 2024. V. 16. P. 76–95.
  44. Benzi M. et al. Decay bounds and O (n) algorithms for approximating functions of sparse matrices // Electron. Trans. Numer. Anal. 2007. V. 28. P. 16–39.
  45. Coulouvrat F. A quasi-analytical shock solution for general nonlinear progressive waves // Wave Motion. 2009. V. 46. № 2. P. 97–107.
  46. Юлдашев П.В., Карзова М.М., Хохлова В.А., Блан-Бенон Ф. Численное моделирование нелинейного параболического уравнения для анализа статистики воспринимаемого уровня шума волны звукового удара после прохождения турбулентного слоя атмосферы // Акуст. журн. 2021. Т. 67. № 1. С. 31–44.
  47. Zhang R., Zhang M., Shu C.W. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes // Communications in Computational Physics. 2011. V. 9. № 3. P. 807–827.
  48. Shu C., Gottlieb S., Ketcheson D. Strong stability preserving Runge–Kutta and multistep time discretizations // World Scientific. 2011. 184 рр.
  49. Shur M.L. et al. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow, turbulence and combustion. 2014. V. 93. № 1. P. 63–92.
  50. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики // М.: Наука. 1975. 287 с.
  51. Ландау Л.Д. Об ударных волнах на далеких расстояниях от места их возникновения // Собрание трудов. Т. 1. М.: Наука, 1969. С. 504–512.
  52. Burgers J.M. A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics // Academic Press Inc. New York. Ed. by Richard von Mises and Theodore von Kármán. 1948. P. 171–199.
  53. Hunt F.V. Notes on the Exact Equations Governing the Propagation of Sound in Fluids // J. Acoust. Soc. Am. 1955. V. 2. P. 1019–1039.
  54. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред. М.: Наука, 1980. 304 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).