NUMERICAL MODEL FOR DESCRIBING THREE-DIMENSIONAL ACOUSTIC FIELDS IN INHOMOGENEOUS MEDIA USING WIDE-ANGLE PARABOLIC APPROXIMATION
- Authors: Konnova E.O1, Karzova M.M1, Khokhlova V.A1, Yuldashev P.V1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 71, No 6 (2025)
- Pages: 762–779
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://ogarev-online.ru/0320-7919/article/view/375989
- DOI: https://doi.org/10.7868/S3034500625060025
- ID: 375989
Cite item
Abstract
About the authors
E. O Konnova
Lomonosov Moscow State University
Email: helen.7aprel@gmail.com
Faculty of Physics Moscow, Russia
M. M Karzova
Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
V. A Khokhlova
Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
P. V Yuldashev
Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
References
- Бреховских Л.М., Годин О.А. Акустика неоднородных сред. М: Наука, 2007. Т. 1. 443 с.
- Руденко О.В., Маков Ю.Н. Звуковой удар: от физики нелинейных волн до акустической экологии (обзор) // Акуст. журн. 2021. Т. 67. № 1. С. 3–30.
- Jensen F., Kuperman W., Porter M., Schmidt H. Computational Ocean Acoustics, NY. 2011.
- Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
- Бобина А.С., Росницкий П.Б., Хохлова Т.Д., Юлдашев П.В., Хохлова В.А. Влияние неоднородностей брюшной стенки на фокусировку ультразвукового пучка при различных положениях излучателя // Известия РАН. Сер. физ. 2021. Т. 85. № 6. С. 875–882.
- Peek A.T., Thomas G.P.L., Leotta D.F., Yuldashev P.V., Khokhlova V.A., Khokhlova T.D. Robust and durable aberrative and absorptive phantom for therapeutic ultrasound applications // J. Acoust. Soc. Am. 2022. V. 151. № 5. P. 3007–3018.
- Thomas G.P.L, Khokhlova T.D., Sapozhnikov O.A., Wang Y.N., Totten S.I., Khokhlova V.A. In vivo aberration correction for transcutaneous HIFU therapy using a multielement array // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022. V. 69. № 10. P. 2955–2964.
- Rosnitskiy P.B., Khokhlova T.D., Schade G.R., Sapozhnikov O.A., Khokhlova V.A. Treatment planning and aberration correction algorithm for HIFU ablation of renal tumors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2024. V. 71. № 3. P. 341–353.
- Treeby B.E., Cox B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields // J. Biomed. Opt. 2010. V.15. № 2. P. 021314.
- Treeby B.E., Jaros J., Rendell A.P., Cox B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method // J. Acoust. Soc. Am. 2012. V. 131. № 6. P. 4324–4336.
- Cox B.T., Kara S., Arridge S.R., Beard P.C. K-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics // J. Acoust. Soc. Am. 2007. V. 121. № 6. P. 3453–3464.
- Wang K., Teoh E., Jaros J., Treeby B.E. Modelling nonlinear ultrasound propagation in absorbing media using the k-Wave toolbox: experimental validation // Proc. IEEE Ultrason. Symp. 2012. P. 523–526.
- Ling Y.-T., Martin E., Treeby B. A discrete source model for simulating bowl-shaped focused ultrasound transducers on regular grids: design and experimental validation // Proc. IEEE Ultrason. Symp. 2015. P. 1–4.
- Robertson J.L.B., Cox B.T., Jaros J., Treeby B.E. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation // J. Acoust. Soc. Am. 2017. V. 141. № 3. P. 1726–1738.
- Kadlubiak K., Jaros J., Treeby B.E. GPU-accelerated simulation of elastic wave propagation // Proc. Inter. Conf. HPCS. 2018. P. 188–195.
- Treeby B.E., Vaverka F., Jaros J. Performance and accuracy analysis of nonlinear k-Wave simulations using local domain decomposition with an 8-GPU server // Proc. Meet. Acoust. 2018. V. 34. P. 022002.
- Jaros J., Rendell A.P., Treeby B.E. Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound // Int. J. High Perform. Comput. Appl. 2015. V. 30. № 2. P. 1–19.
- Гусев В.А. Аппроксимация пространственного спектра нелинейных пучков с осью, наклоненной к излучающей поверхности // Акуст. журн. 2020. Т. 66. № 6. С. 583–598.
- Фок В.А. Проблемы дифракции и распространения электромагнитных волн. М.: Стереотип, 2020. 518 с.
- Vlasov S.N., Talanov V.I. The parabolic equation in the theory of wave propagation // Radiophys. Quant. El. 1995. V. 38, № 1–2. P. 1–12.
- Soneson J.E. A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams // J. Acoust. Soc. Am. Exp. Lett. 2012. V. 131. № 6. P. EL481–EL486.
- Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Maxwell A.D., Kreider W., Bailey M.R., Khokhlova V.A. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64. № 2. P. 374–390.
- Тыщенко А.Г., Заикин О.С., Сорокин М.А., Петров П.С. Комплекс программ для расчета акустических полей в мелком море на основе метода широкоугольных модовых параболических уравнений // Акуст. журн. 2021. Т. 67. № 5. С. 533–541.
- Тыщенко А.Г., Козицкий С.Б., Казак М.С., Петров П.С. Современные методы расчета акустических полей в океане, основанные на их представлении в виде суперпозиции мод // Акуст. журн. 2023. Т. 69. № 5. С. 620–636.
- Collins M.D., Siegmann W.L. Treatment of variable topography with the seismoacoustic parabolic equation // IEEE J. Oceanic Eng. 2016. V. 42. № 2. P. 1–6.
- Salomons E.M. Computational atmospheric acoustics. Dordrecht: Kluwer Academic Publisher, 2001.
- Ostashev V., Wilson D., Muhlestein M. Wave and extrawide-angle parabolic equations for sound propagation in a moving atmosphere // J. Acoust. Soc. Am. 2020. V. 147. № 6. P. 3969–3984.
- Kawano K., Kitoh T. Introduction to optical waveguide analysis: solving Maxwell’s equations and the Schrödinger equation. New York: J. Wiley, 2001. 280 p.
- Levy M. Parabolic equation methods for electromagnetic wave propagation. London: The Institution of electrical engineers, 2000. 336 p.
- Yuldashev P.V., Karzova M.M., Kreider W., Rosnitskiy P.B., Sapozhnikov O.A., Khokhlova V.A. “HIFU beam:” a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. № 9. P. 2837–2852.
- Lee D., Pierce A.D., Shang E.-C. Parabolic equation development in the twentieth century // J. Comp. Acoust. 2000. V. 8. № 4. P. 527–637.
- Xu C.-X., Tang J., Piao S.-C., Liu J.-Q., Zhang S.-Z. Developments of parabolic equation method in the period of 2000–2016 // Chin. Phys. B. 2016. V. 25. № 12. 124315.
- Siegmann W.L., Kriegsmann G.A., Lee D. A wide-angle three-dimensional parabolic wave equation // J. Acoust. Soc. Am. 1985. V. 78. № 2. P. 659–664.
- Collins M.D., Siegmann W.L. Parabolic wave equations with applications. New York: Springer, 2019. 135 p.
- Godin O.A. Reciprocity and energy conservation within the parabolic approximation // Wave Motion. 1999. V. 29. P. 175–194.
- Авилов К.В., Мальцев Н.Е. К вычислению звуковых полей в океане методом параболического уравнения // Акуст. журн. 1981. Т. 27. № 3. C. 335–340.
- Авилов К.В. Псевдодифференциальные параболические уравнения распространения звука в океане, плавно неоднородном по горизонтали, и их численное решение // Акуст. журн. 1995. Т. 41. № 1. C. 5–12.
- Collins M.D. A split-step Padé solution for the parabolic equation method // J. Acoust. Soc. Am. 1993. V. 93. № 4. P. 1736–1742.
- West M., Gilbert K., Sack R.A. A tutorial on the parabolic equation (PE) model used for long range sound propagation in the atmosphere // Appl. Acoust. 1992. V. 37. № 1. P. 31–49.
- Sturm F. Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides // J. Acoust. Soc. Am. 2005. V. 117. № 3. P. 1058–1079.
- Lee K., Seong W., Na Y. Split-step Padé solver for three-dimensional Cartesian acoustic parabolic equation in stair-step representation of ocean environment // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2050–2057.
- Khodr C., Azarpeyvand M., Green D.N. An iterative three-dimensional parabolic equation solver for propagation above irregular boundaries // J. Acoust. Soc. Am. 2020. V. 148. № 2. P. 1089–1100.
- Lin Y.-T., Collins M.D., Duda T.F. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants // J. Acoust. Soc. Am. 2012. V. 132. № 5. P. EL364–EL370.
- Lin Y.-T. Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2058–2067.
- Sturm F. Leading-order cross term correction of three-dimensional parabolic equation models // J. Acoust. Soc. Am. 2016. V. 139. № 1. P. 263–270.
- Lee K., Seong W., Na Y. Three-dimensional Cartesian parabolic equation model with higher-order cross-terms using operator splitting, rational filtering, and split-step Padé algorithm // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2041–2049.
- Ivansson S. Local accuracy of cross-term corrections of three-dimensional parabolic-equation models // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2030–2040.
- Yuldashev P.V., Konnova E.O., Karzova M.M., Khokhlova V.A. Three-dimensional wide-angle parabolic equations with propagator separation based on finite Fourier series // Acoust. Phys. 2024. V. 70. № 5. P. 783–796.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes. The art of scientific computing. 3rd ed. Cambridge: University Press, 2007. 1256 p.
- Lin Y.-T., Duda T.F. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme // J. Acoust. Soc. Am. 2012. V. 132. № 2. P. EL61–EL67.
- Collins M.D., Evans R.B. A two-way parabolic equation for acoustic backscattering in the ocean // J. Acoust. Soc. Am. 1992. V. 91. № 3. P. 1357–1368.
- Zemp R.J., Tavakkoli J., Cobbold R.S.C. Modeling of nonlinear ultrasound propagation in tissue from array transducers // J. Acoust. Soc. Am. 2003. V. 113. № 1. P. 139–152.
- Yevick D., Hermansson B. Convergence properties of wide-angle techniques // IEEE Phot. Tech. Lett. 1994. V. 6. № 12. P. 1457–1459.
- Balkenohl A., Shultz D. Fourier expansion of the beam propagation operator in the eigenvalue domain // J. Lightwave Technol. 2014. V. 32. № 23. P. 4519–4527.
- McLachlan R.I., Quispel G.R.W. Splitting methods // Acta Numerica. 2002. V. 11. P. 341–434.
- Hermansson B., Yevick D. Generalized propagation techniques // Opt. Lett. 1991. V. 16. № 6. P. 354–356.
- Хохлова В.А., Пономарев А.Е., Аверкью М.А., Крам Л.А. Нелинейные импульсные поля прямоугольных фокусированных источников диагностического ультразвука // Акуст. журн. 2006. Т. 52. № 4. С. 560–570.
- Юлдашев П.В., Коннова Е.О., Карзова М.М., Хохлова В.А. Особенности построения модифицированного пропагатора для широкоугольной модели на основе операторного ряда Фурье // Сборник трудов XXXVI сессии Российского акустического общества. М.: ГЕОС, 2024. C. 552.
- Arora S., Kaur I. Applications of Quintic Hermite collocation with time discretization to singularly perturbed problems // Appl. Math. Comp. 2018. V. 316. P. 409–421.
- Cederberg R.J., Collins M.D., Schmidt H., Siegmann W.L. Rational operators for filtering // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2518–2523.
- Doc J.-B., Lihoreau B., Félix S., Faure C., Dubois G. Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons // J. Acoust. Soc. Am. 2015. V. 137. № 1. P. 310–320.
- Blackmore J., Clevaland R.O., Mobley J. Spatial filters suppress ripple artifacts in the computation of acoustic fields with the angular spectrum method // J. Acoust. Soc. Am. 2018. V. 144. № 5. P. 2947–2951.
- Коннова Е.О., Хохлова В.А., Юлдашев П.В. Широкоугольная численная модель для описания дифрагирующих акустических пучков в неоднородных средах // Сборник трудов XXXVI сессии РАО. М.: ГЕОС, 2024. C. 553–559.
- Tavakkoli J., Cathignol D., Souchon R., Sapozhnikov O.A. Modeling of pulsed finite-amplitude focused sound beams in time domain // J. Acoust. Soc. Am. 1998. V. 104. № 4. P. 2061–2072.
- Moler C.B., Loan C.V. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later // SIAM Review. 2003. V. 45. № 1. P. 1–46.
- Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
- Tsysar S., Kreider W., Sapozhnikov O. Improved hydrophone calibration by combining acoustic holography with the radiation force balance measurements // Proc. Mtgs. Acoust. 2013. V. 19. 055015.
- O’Neil H.T. Theory of Focusing Radiators // J. Acoust. Soc. Am. 1949. V. 21. № 5. P. 516–526.
Supplementary files


