NUMERICAL MODEL FOR DESCRIBING THREE-DIMENSIONAL ACOUSTIC FIELDS IN INHOMOGENEOUS MEDIA USING WIDE-ANGLE PARABOLIC APPROXIMATION

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical method for calculating the acoustic field in a smoothly inhomogeneous medium, based on the use of a three-dimensional wide-angle parabolic model and the expansion of a modified propagator of the one-way wave equation into operator Fourier series, is presented. The problem of focusing of an ultrasound beam generated by a transducer with parameters characteristic of non-invasive ultrasound surgery devices is considered in a medium with smooth inhomogeneity, simulating the inhomogeneities of soft biological tissues. An optimization search for the best values of the free parameters of the modified propagator has been conducted to achieve the smallest approximation error of the propagator using a Fourier series with a finite number of harmonics. A comparison of the simulation results obtained using the developed method and the reference full-wave pseudo-spectral numerical model “k-Wave” has been carried out.

About the authors

E. O Konnova

Lomonosov Moscow State University

Email: helen.7aprel@gmail.com
Faculty of Physics Moscow, Russia

M. M Karzova

Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

V. A Khokhlova

Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

P. V Yuldashev

Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

References

  1. Бреховских Л.М., Годин О.А. Акустика неоднородных сред. М: Наука, 2007. Т. 1. 443 с.
  2. Руденко О.В., Маков Ю.Н. Звуковой удар: от физики нелинейных волн до акустической экологии (обзор) // Акуст. журн. 2021. Т. 67. № 1. С. 3–30.
  3. Jensen F., Kuperman W., Porter M., Schmidt H. Computational Ocean Acoustics, NY. 2011.
  4. Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
  5. Бобина А.С., Росницкий П.Б., Хохлова Т.Д., Юлдашев П.В., Хохлова В.А. Влияние неоднородностей брюшной стенки на фокусировку ультразвукового пучка при различных положениях излучателя // Известия РАН. Сер. физ. 2021. Т. 85. № 6. С. 875–882.
  6. Peek A.T., Thomas G.P.L., Leotta D.F., Yuldashev P.V., Khokhlova V.A., Khokhlova T.D. Robust and durable aberrative and absorptive phantom for therapeutic ultrasound applications // J. Acoust. Soc. Am. 2022. V. 151. № 5. P. 3007–3018.
  7. Thomas G.P.L, Khokhlova T.D., Sapozhnikov O.A., Wang Y.N., Totten S.I., Khokhlova V.A. In vivo aberration correction for transcutaneous HIFU therapy using a multielement array // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022. V. 69. № 10. P. 2955–2964.
  8. Rosnitskiy P.B., Khokhlova T.D., Schade G.R., Sapozhnikov O.A., Khokhlova V.A. Treatment planning and aberration correction algorithm for HIFU ablation of renal tumors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2024. V. 71. № 3. P. 341–353.
  9. Treeby B.E., Cox B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields // J. Biomed. Opt. 2010. V.15. № 2. P. 021314.
  10. Treeby B.E., Jaros J., Rendell A.P., Cox B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method // J. Acoust. Soc. Am. 2012. V. 131. № 6. P. 4324–4336.
  11. Cox B.T., Kara S., Arridge S.R., Beard P.C. K-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics // J. Acoust. Soc. Am. 2007. V. 121. № 6. P. 3453–3464.
  12. Wang K., Teoh E., Jaros J., Treeby B.E. Modelling nonlinear ultrasound propagation in absorbing media using the k-Wave toolbox: experimental validation // Proc. IEEE Ultrason. Symp. 2012. P. 523–526.
  13. Ling Y.-T., Martin E., Treeby B. A discrete source model for simulating bowl-shaped focused ultrasound transducers on regular grids: design and experimental validation // Proc. IEEE Ultrason. Symp. 2015. P. 1–4.
  14. Robertson J.L.B., Cox B.T., Jaros J., Treeby B.E. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation // J. Acoust. Soc. Am. 2017. V. 141. № 3. P. 1726–1738.
  15. Kadlubiak K., Jaros J., Treeby B.E. GPU-accelerated simulation of elastic wave propagation // Proc. Inter. Conf. HPCS. 2018. P. 188–195.
  16. Treeby B.E., Vaverka F., Jaros J. Performance and accuracy analysis of nonlinear k-Wave simulations using local domain decomposition with an 8-GPU server // Proc. Meet. Acoust. 2018. V. 34. P. 022002.
  17. Jaros J., Rendell A.P., Treeby B.E. Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound // Int. J. High Perform. Comput. Appl. 2015. V. 30. № 2. P. 1–19.
  18. Гусев В.А. Аппроксимация пространственного спектра нелинейных пучков с осью, наклоненной к излучающей поверхности // Акуст. журн. 2020. Т. 66. № 6. С. 583–598.
  19. Фок В.А. Проблемы дифракции и распространения электромагнитных волн. М.: Стереотип, 2020. 518 с.
  20. Vlasov S.N., Talanov V.I. The parabolic equation in the theory of wave propagation // Radiophys. Quant. El. 1995. V. 38, № 1–2. P. 1–12.
  21. Soneson J.E. A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams // J. Acoust. Soc. Am. Exp. Lett. 2012. V. 131. № 6. P. EL481–EL486.
  22. Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Maxwell A.D., Kreider W., Bailey M.R., Khokhlova V.A. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64. № 2. P. 374–390.
  23. Тыщенко А.Г., Заикин О.С., Сорокин М.А., Петров П.С. Комплекс программ для расчета акустических полей в мелком море на основе метода широкоугольных модовых параболических уравнений // Акуст. журн. 2021. Т. 67. № 5. С. 533–541.
  24. Тыщенко А.Г., Козицкий С.Б., Казак М.С., Петров П.С. Современные методы расчета акустических полей в океане, основанные на их представлении в виде суперпозиции мод // Акуст. журн. 2023. Т. 69. № 5. С. 620–636.
  25. Collins M.D., Siegmann W.L. Treatment of variable topography with the seismoacoustic parabolic equation // IEEE J. Oceanic Eng. 2016. V. 42. № 2. P. 1–6.
  26. Salomons E.M. Computational atmospheric acoustics. Dordrecht: Kluwer Academic Publisher, 2001.
  27. Ostashev V., Wilson D., Muhlestein M. Wave and extrawide-angle parabolic equations for sound propagation in a moving atmosphere // J. Acoust. Soc. Am. 2020. V. 147. № 6. P. 3969–3984.
  28. Kawano K., Kitoh T. Introduction to optical waveguide analysis: solving Maxwell’s equations and the Schrödinger equation. New York: J. Wiley, 2001. 280 p.
  29. Levy M. Parabolic equation methods for electromagnetic wave propagation. London: The Institution of electrical engineers, 2000. 336 p.
  30. Yuldashev P.V., Karzova M.M., Kreider W., Rosnitskiy P.B., Sapozhnikov O.A., Khokhlova V.A. “HIFU beam:” a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. № 9. P. 2837–2852.
  31. Lee D., Pierce A.D., Shang E.-C. Parabolic equation development in the twentieth century // J. Comp. Acoust. 2000. V. 8. № 4. P. 527–637.
  32. Xu C.-X., Tang J., Piao S.-C., Liu J.-Q., Zhang S.-Z. Developments of parabolic equation method in the period of 2000–2016 // Chin. Phys. B. 2016. V. 25. № 12. 124315.
  33. Siegmann W.L., Kriegsmann G.A., Lee D. A wide-angle three-dimensional parabolic wave equation // J. Acoust. Soc. Am. 1985. V. 78. № 2. P. 659–664.
  34. Collins M.D., Siegmann W.L. Parabolic wave equations with applications. New York: Springer, 2019. 135 p.
  35. Godin O.A. Reciprocity and energy conservation within the parabolic approximation // Wave Motion. 1999. V. 29. P. 175–194.
  36. Авилов К.В., Мальцев Н.Е. К вычислению звуковых полей в океане методом параболического уравнения // Акуст. журн. 1981. Т. 27. № 3. C. 335–340.
  37. Авилов К.В. Псевдодифференциальные параболические уравнения распространения звука в океане, плавно неоднородном по горизонтали, и их численное решение // Акуст. журн. 1995. Т. 41. № 1. C. 5–12.
  38. Collins M.D. A split-step Padé solution for the parabolic equation method // J. Acoust. Soc. Am. 1993. V. 93. № 4. P. 1736–1742.
  39. West M., Gilbert K., Sack R.A. A tutorial on the parabolic equation (PE) model used for long range sound propagation in the atmosphere // Appl. Acoust. 1992. V. 37. № 1. P. 31–49.
  40. Sturm F. Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides // J. Acoust. Soc. Am. 2005. V. 117. № 3. P. 1058–1079.
  41. Lee K., Seong W., Na Y. Split-step Padé solver for three-dimensional Cartesian acoustic parabolic equation in stair-step representation of ocean environment // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2050–2057.
  42. Khodr C., Azarpeyvand M., Green D.N. An iterative three-dimensional parabolic equation solver for propagation above irregular boundaries // J. Acoust. Soc. Am. 2020. V. 148. № 2. P. 1089–1100.
  43. Lin Y.-T., Collins M.D., Duda T.F. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants // J. Acoust. Soc. Am. 2012. V. 132. № 5. P. EL364–EL370.
  44. Lin Y.-T. Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2058–2067.
  45. Sturm F. Leading-order cross term correction of three-dimensional parabolic equation models // J. Acoust. Soc. Am. 2016. V. 139. № 1. P. 263–270.
  46. Lee K., Seong W., Na Y. Three-dimensional Cartesian parabolic equation model with higher-order cross-terms using operator splitting, rational filtering, and split-step Padé algorithm // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2041–2049.
  47. Ivansson S. Local accuracy of cross-term corrections of three-dimensional parabolic-equation models // J. Acoust. Soc. Am. 2019. V. 146. № 3. P. 2030–2040.
  48. Yuldashev P.V., Konnova E.O., Karzova M.M., Khokhlova V.A. Three-dimensional wide-angle parabolic equations with propagator separation based on finite Fourier series // Acoust. Phys. 2024. V. 70. № 5. P. 783–796.
  49. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes. The art of scientific computing. 3rd ed. Cambridge: University Press, 2007. 1256 p.
  50. Lin Y.-T., Duda T.F. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme // J. Acoust. Soc. Am. 2012. V. 132. № 2. P. EL61–EL67.
  51. Collins M.D., Evans R.B. A two-way parabolic equation for acoustic backscattering in the ocean // J. Acoust. Soc. Am. 1992. V. 91. № 3. P. 1357–1368.
  52. Zemp R.J., Tavakkoli J., Cobbold R.S.C. Modeling of nonlinear ultrasound propagation in tissue from array transducers // J. Acoust. Soc. Am. 2003. V. 113. № 1. P. 139–152.
  53. Yevick D., Hermansson B. Convergence properties of wide-angle techniques // IEEE Phot. Tech. Lett. 1994. V. 6. № 12. P. 1457–1459.
  54. Balkenohl A., Shultz D. Fourier expansion of the beam propagation operator in the eigenvalue domain // J. Lightwave Technol. 2014. V. 32. № 23. P. 4519–4527.
  55. McLachlan R.I., Quispel G.R.W. Splitting methods // Acta Numerica. 2002. V. 11. P. 341–434.
  56. Hermansson B., Yevick D. Generalized propagation techniques // Opt. Lett. 1991. V. 16. № 6. P. 354–356.
  57. Хохлова В.А., Пономарев А.Е., Аверкью М.А., Крам Л.А. Нелинейные импульсные поля прямоугольных фокусированных источников диагностического ультразвука // Акуст. журн. 2006. Т. 52. № 4. С. 560–570.
  58. Юлдашев П.В., Коннова Е.О., Карзова М.М., Хохлова В.А. Особенности построения модифицированного пропагатора для широкоугольной модели на основе операторного ряда Фурье // Сборник трудов XXXVI сессии Российского акустического общества. М.: ГЕОС, 2024. C. 552.
  59. Arora S., Kaur I. Applications of Quintic Hermite collocation with time discretization to singularly perturbed problems // Appl. Math. Comp. 2018. V. 316. P. 409–421.
  60. Cederberg R.J., Collins M.D., Schmidt H., Siegmann W.L. Rational operators for filtering // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2518–2523.
  61. Doc J.-B., Lihoreau B., Félix S., Faure C., Dubois G. Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons // J. Acoust. Soc. Am. 2015. V. 137. № 1. P. 310–320.
  62. Blackmore J., Clevaland R.O., Mobley J. Spatial filters suppress ripple artifacts in the computation of acoustic fields with the angular spectrum method // J. Acoust. Soc. Am. 2018. V. 144. № 5. P. 2947–2951.
  63. Коннова Е.О., Хохлова В.А., Юлдашев П.В. Широкоугольная численная модель для описания дифрагирующих акустических пучков в неоднородных средах // Сборник трудов XXXVI сессии РАО. М.: ГЕОС, 2024. C. 553–559.
  64. Tavakkoli J., Cathignol D., Souchon R., Sapozhnikov O.A. Modeling of pulsed finite-amplitude focused sound beams in time domain // J. Acoust. Soc. Am. 1998. V. 104. № 4. P. 2061–2072.
  65. Moler C.B., Loan C.V. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later // SIAM Review. 2003. V. 45. № 1. P. 1–46.
  66. Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
  67. Tsysar S., Kreider W., Sapozhnikov O. Improved hydrophone calibration by combining acoustic holography with the radiation force balance measurements // Proc. Mtgs. Acoust. 2013. V. 19. 055015.
  68. O’Neil H.T. Theory of Focusing Radiators // J. Acoust. Soc. Am. 1949. V. 21. № 5. P. 516–526.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).