Molecular mechanisms of thyroid-stimulating hormone receptor regulation – from signaling to drug development
- Authors: Shpakov A.O.1, Derkach K.V.1
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 56, No 4 (2025)
- Pages: 54-78
- Section: Articles
- URL: https://ogarev-online.ru/0301-1798/article/view/368084
- DOI: https://doi.org/10.7868/S3034611825040042
- ID: 368084
Cite item
Abstract
About the authors
A. O. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: alex_shpakov@list.ru
Deputy Director, Head of Laboratory, Doctor of Biological Sciences St. Petersburg, 194223
K. V. Derkach
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: derkatch_k@list.ru
Leading Researcher, PhD St. Petersburg, 194223
References
- Shpakov A.O., Derkach K.V. Multiple mechanisms of allosteric regulation of the luteinizing hormone receptor. Uspekhi fiziologicheskikh nauk. Sci. 2024. Vol. 53. No. 4. pp. 45–74. (In Russ.) https://doi.org/10.31857/S0301179824040031
- Agwuegbo U.T., Colley E., Albert A.P. et al. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling. Front. Endocrinol. (Lausanne). 2021. Vol. 12. 765727. https://doi.org/10.3389/fendo.2021.765727
- Allen M.D., Neumann S., Gershengorn M.C. Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J. 2011. Vol. 25. No. 10. P. 3687–3694. https://doi.org/10.1096/fj.11-188961
- Allen M.D., Neumann S., Gershengorn M.C. Small-molecule thyrotropin receptor agonist activates naturally occurring thyrotropin-insensitive mutants and reveals their distinct cyclic adenosine monophosphate signal persistence. Thyroid. 2011. Vol. 21. No. 8. P. 907–912. https://doi.org/10.1089/thy.2011.0025
- Ashim J., Seo M.J., Ji S., Heo J., Yu W. Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation. Mol. Pharmacol. 2025. Vol. 107. No. 6. 100043. https://doi.org/10.1016/j.molpha.2025.100043
- Bahn R.S. Thyrotropin receptor expression in orbital adipose/connective tissues from patients with thyroid-associated ophthalmopathy. Thyroid. 2002. Vol. 12. No. 3. P. 193–195. https://doi.org/10.1089/105072502753600124
- Bakhtyukov A.A., Derkach K.V., Fokina E.A. et al. Development of Low-Molecular-Weight Allosteric Agonist of Thyroid-Stimulating Hormone Receptor with Thyroidogenic Activity. Dokl. Biochem. Biophys. 2022. Vol. 503. No. 1. P. 67–70. https://doi.org/10.1134/S1607672922020016
- Bock A., Bermudez M. Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J. 2021. V. 288. No. 8. P. 2513–2528. https://doi.org/10.1111/febs.15783
- Boutin A., Eliseeva E., Gershengorn M.C., Neumann S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J. 2014. Vol. 28. No. 8. P. 3446–3455. https://doi.org/10.1096/fj.14-251124
- Boutin A., Gershengorn M.C., Neumann S. β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 312. https://doi.org/10.3389/fendo.2020.00312
- Boutin A., Krieger C.C., Marcus-Samuels B. et al. TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 276. https://doi.org/10.3389/fendo.2020.00276
- Bruno R., Ferretti E., Tosi E. et al. Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin. J. Clin. Endocrinol. Metab. 2005. Vol. 90. No. 10. P. 5692–5697. https://doi.org/10.1210/jc.2005-0800
- Brüser A., Schulz A., Rothemund S. et al. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J. Biol. Chem. 2016. Vol. 291. No. 2. P. 508–520. https://doi.org/10.1074/jbc.M115.701102
- Castro I., Lima L., Seoane R., Lado-Abeal J. Identification and functional characterization of two novel activating thyrotropin receptor mutants in toxic thyroid follicular adenomas. Thyroid. 2009. Vol. 19. No. 6. P. 645–649. https://doi.org/10.1089/thy.2009.0002
- Chu Y.D., Yeh C.T. The Molecular Function and Clinical Role of Thyroid Stimulating Hormone Receptor in Cancer Cells. Cells. 2020. Vol. 9. No. 7. P. 1730. https://doi.org/10.3390/cells9071730
- Claeysen S., Govaerts C., Lefort A. et al. A conserved Asn in TM7 of the thyrotropin receptor is a common requirement for activation by both mutations and its natural agonist. FEBS Lett. 2002. Vol. 517. No. 1–3. P. 195–200. https://doi.org/10.1016/s0014-5793(02)02620-0
- Contreras-Jurado C. Thyroid Hormones and Co-workers: An Overview. Methods Mol. Biol. 2025. Vol. 2876. P. 3–16. https://doi.org/10.1007/978-1-0716-4252-8_1
- Costagliola S., Panneels V., Bonomi M. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO J. 2002. Vol. 21. No. 4. P. 504–513. https://doi.org/10.1093/emboj/21.4.504
- Couët J., de Bernard S., Loosfelt H. et al. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain. Biochemistry. 1996. Vol. 35. No. 47. P. 14800–14805. https://doi.org/10.1021/bi961359w
- Cui X., Wang F., Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front. Immunol. 2023. Vol. 14. 1062045. https://doi.org/10.3389/fimmu.2023.1062045
- Dardente H., Migaud M. Thyroid hormone and hypothalamic stem cells in seasonal functions. Vitam. Horm. 2021. Vol. 116. P. 91–131. https://doi.org/10.1016/bs.vh.2021.02.005
- De Gregorio F., Pellegrino M., Picchietti S. et al. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicol. Appl. Pharmacol. 2011. Vol. 253. No. 2. P. 121–129. https://doi.org/10.1016/j.taap.2011.03.018
- Derkach K.V., Bakhtyukov A.A., Sorokoumov V.N. et al. Low Molecular Weight Thyrotropin Receptor Inverse Agonist is Active upon both Intraperitoneal and Oral Administration. J. Evol. Biochem. Physiol. 2024. Vol. 60. No. 1. P. 295–305. https://doi.org/10.1134/S0022093024010216
- Derkach K.V., Bakhtyukov A.A., Sorokoumov V.N., Shpakov A.O. New Thieno-[2,3-d]pyrimidine-Based Functional Antagonist for the Receptor of Thyroid Stimulating Hormone. Dokl. Biochem. Biophys. 2020. Vol. 491. No. 1. P. 77–80. https://doi.org/10.1134/S1607672920020064
- Derkach K.V., Didenko E.A., Sorokoumov V.N., Shpakov A.O. Substitution of an Ethyl Group with a Methyl Group in the Variable Moiety of TPY3m, a Thyroid-Stimulating Hormone Receptor Agonist, Modifies the Effect of This Analogue on the Basal and Thyroliberin-Stimulated Levels of Thyroid Hormones in Rats. Cell Tissue Biol. 2025. Vol. 19. No. 2. P. 102–112. https://doi.org/10.1134/S1990519X24600716
- Derkach K.V., Didenko E.A., Sorokoumov V.N., Zakharova I.O., Shpakov A.O. Low-molecular-weight Ligand of the Thyroid-stimulating Hormone Receptor with the Activity of a Partial Agonist and a Negative Allosteric Modulator. Dokl. Biochem. Biophys. 2025. Vol. 520. No. 1. P. 53–57. https://doi.org/10.1134/S1607672924600799
- Derkach K.V., Fokina E.A., Bakhtyukov A.A. et al. The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor. Bull. Exp. Biol. Med. 2022. Vol. 172. No. 6. P. 713–717. https://doi.org/10.1007/s10517-022-05462-x
- Derkach K.V., Pechalnova A.S., Nazarov I.R. et al. Development of Thieno[2,3-d]-pyrimidine-based Positive Allosteric Modulators of Thyroid Stimulating Hormone Receptor and their Effect on Thyroid Status in Rats. J. Evol. Biochem. Physiol. 2025. Vol. 61. No. 2. P. 425–437. https://doi.org/10.1134/S002209302502005X
- Derkach K.V., Pechalnova A.S., Sorokoumov V.N. et al. Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int. J. Mol. Sci. 2025. Vol. 26. No. 2. P. 703. https://doi.org/10.3390/ijms26020703
- Derkach K.V., Sorokoumov V.N., Morina I.Y. et al. Regulatory Effects of 5-Day Oral and Intraperitoneal Administration of a Thienopyrimidine Derivative on the Thyroid Status in Rats. Bull. Exp. Biol. Med. 2024. Vol. 177. No. 4. P. 559–563. https://doi.org/10.1007/s10517-024-06223-8
- Draman M.S., Zhang L., Dayan C., Ludgate M. Orbital Signaling in Graves' Orbitopathy. Front. Endocrinol. (Lausanne). 2021. Vol. 12. 739994. https://doi.org/10.3389/fendo.2021.739994
- Duan J., Xu P., Cheng X. et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature. 2021. Vol. 598. No. 7882. P. 688–692. https://doi.org/10.1038/s41586-021-03924-2
- Duan J., Xu P., Luan X. et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature. 2022. Vol. 609. No. 7928. P. 854–859. https://doi.org/10.1038/s41586-022-05173-3
- Ebrhim R.S., Bruellman R.J., Watanabe Y. et al. Central Congenital Hypothyroidism Caused by a Novel Mutation, C47W, in the Cysteine Knot Region of TSHβ. Horm. Res. Paediatr. 2019. Vol. 92. No. 6. P. 390–394. https://doi.org/10.1159/000504981
- Estrada J.M., Soldin D., Buckey T.M., Burman K.D., Soldin O.P. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid. 2014. Vol. 24. No. 3. P. 411–423. https://doi.org/10.1089/thy.2013.0119
- Evans M., Sanders J., Tagami T. et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin. Endocrinol. (Oxf.). 2010. Vol. 73. No. 3. P. 404–412. https://doi.org/10.1111/j.1365-2265.2010.03831.x
- Fan Q.R., Hendrickson W.A. Structural biology of glycoprotein hormones and their receptors. Endocrine. 2005. V. 26. No. 3. P. 179–188. https://doi.org/10.1385/endo:26:3:179
- Faust B., Billesbølle C.B., Suomivuori C.M. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature. 2022. Vol. 609. No. 7928. P. 846–853. https://doi.org/10.1038/s41586-022-05159-1
- Feldt-Rasmussen U., Effraimidis G., Klose M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol. Cell. Endocrinol. 2021. Vol. 525. 111173. https://doi.org/10.1016/j.mce.2021.111173
- Ferraz C., Paschke R. Inheritable and sporadic non-autoimmune hyperthyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2017. Vol. 31. No. 2. P. 265–275. https://doi.org/10.1016/j.beem.2017.04.005
- Fröhlich E., Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int. J. Mol. Sci. 2023. Vol. 24. No. 14. 11699. https://doi.org/10.3390/ijms241411699
- Furmaniak J., Sanders J., Núñez Miguel R., Rees Smith B. Mechanisms of Action of TSHR Autoantibodies. Horm. Metab. Res. 2015. Vol. 47. No. 10. P. 735–752. https://doi.org/10.1055/s-0035-1559648
- Furmaniak J., Sanders J., Sanders P., Li Y., Rees Smith B. TSH receptor specific monoclonal autoantibody K1-70TM targeting of the TSH receptor in subjects with Graves' disease and Graves' orbitopathy-Results from a phase I clinical trial. Clin. Endocrinol. (Oxf.). 2022. Vol. 96. No. 6. P. 878–887. https://doi.org/10.1111/cen.14681
- Girnita L., Janssen J.A.M.J.L., Smith T.J. G-protein coupled & membrane tyrosine kinase receptors relationship yield therapy opportunities. Endocr. Rev. 2025. bnaf019. https://doi.org/10.1210/endrev/bnaf019
- Gluvic Z., Obradovic M., Stewart A.J. et al. Levothyroxine Treatment and the Risk of Cardiac Arrhythmias – Focus on the Patient Submitted to Thyroid Surgery. Front. Endocrinol. (Lausanne). 2021. Vol. 12. 758043. https://doi.org/10.3389/fendo.2021.758043
- Godbole A., Lyga S., Lohse M.J., Calebiro D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun. 2017. Vol. 8. No. 1. P. 443. https://doi.org/10.1038/s41467-017-00357-2
- Grasberger H., Refetoff S. Resistance to thyrotropin. Best Pract. Res. Clin. Endocrinol. Metab. 2017. Vol. 31. No. 2. P. 183–194. https://doi.org/10.1016/j.beem.2017.03.004
- He X., Duan J., Ji Y. et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput. Struct. Biotechnol. J. 2022. Vol. 20. P. 6503–6511. https://doi.org/10.1016/j.csbj.2022.11.039
- Hoyer I., Haas A.K., Kreuchwig A., Schülein R., Krause G. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem. Soc. Trans. 2013. Vol. 41. No. 1. P. 213–217. https://doi.org/10.1042/BST20120319
- Hsu S.Y., Nakabayashi K., Bhalla A. Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. Mol. Endocrinol. 2002. Vol. 16. No. 7. P. 1538–1551. https://doi.org/10.1210/mend.16.7.0871
- Jang D., Morgan S.J., Klubo-Gwiezdzinska J. et al. Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes. Thyroid. 2020. Vol. 30. No. 2. P. 270–276. https://doi.org/10.1089/thy.2019.0418
- Jin M., Jang A., Kim C.A. et al. Long-term follow-up result of antithyroid drug treatment of Graves' hyperthyroidism in a large cohort. Eur. Thyroid J. 2023. Vol. 12. No. 2. :e220226. https://doi.org/10.1530/ETJ-22-0226
- Kleinau G., Haas A.K., Neumann S. et al. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor. FASEB J. 2010. Vol. 24. No. 7. P. 2347–2354. https://doi.org/10.1096/fj.09-149146
- Kleinau G., Worth C.L., Kreuchwig A. et al. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front. Endocrinol. (Lausanne). 2017. Vol. 8. P. 86. https://doi.org/10.3389/fendo.2017.00086
- Krause G., Eckstein A., Schülein R. Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur. Thyroid J. 2020. Vol. 9. Suppl. 1. P. 66–77. https://doi.org/10.1159/000511871
- Krause G., Kreuchwig A., Kleinau G. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One. 2012. Vol. 7. No. 12. e52920. https://doi.org/10.1371/journal.pone.0052920
- Krause G., Marcinkowski P. Intervention Strategies into Glycoprotein Hormone Receptors for Modulating (Mal-)function, with Special Emphasis on the TSH Receptor. Horm. Metab. Res. 2018. Vol. 50. No. 12. P. 894–907. https://doi.org/10.1055/a-0749-6528
- Kreuchwig A., Kleinau G., Krause G. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses. Mol. Endocrinol. 2013. Vol. 27. No. 8. P. 1357–1363. https://doi.org/10.1210/me.2013-1115
- Krieger C.C., Neumann S., Gershengorn M.C. Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis?. Int. J. Mol. Sci. 2020. Vol. 21. No. 18. 6561. https://doi.org/10.3390/ijms21186561
- Kushnir J., Gumpper R.H. Molecular Glues: A New Approach to Modulating GPCR Signaling Bias. Biochemistry. 2025. Vol. 64. No. 4. P. 749–759. https://doi.org/10.1021/acs.biochem.4c00734
- Lanzolla G., Marinò M., Menconi F. Graves disease: latest understanding of pathogenesis and treatment options. Nat. Rev. Endocrinol. 2024. Vol. 20. No. 11. P. 647–660. https://doi.org/10.1038/s41574-024-01016-5
- Latif R., Ali M.R., Ma R. et al. New small molecule agonists to the thyrotropin receptor. Thyroid. 2015. Vol. 25. No. 1. P. 51–62. https://doi.org/10.1089/thy.2014.0119
- Latif R., Mezei M., Davies T.F. Mechanisms in Thyroid Eye Disease: The TSH Receptor Interacts Directly With the IGF-1 Receptor. Endocrinology. 2025. Vol. 166. No. 2. bqaf009. https://doi.org/10.1210/endocr/bqaf009
- Latif R., Morshed S.A., Ma R. et al. A Gq Biased Small Molecule Active at the TSH Receptor. Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 372. https://doi.org/10.3389/fendo.2020.00372
- Laugwitz K.L., Allgeier A., Offermanns S. et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl. Acad. Sci. U S A. 1996. Vol. 93. No. 1. P. 116–120. https://doi.org/10.1073/pnas.93.1.116
- Lazim R., Suh D., Lee J.W. et al. Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int. J. Mol. Sci. 2021. Vol. 22. No. 6. 3241. https://doi.org/10.3390/ijms22063241
- Lazzaretti C., Paradiso E., Sperduti S. et al. Trafficking of luteinizing hormone receptor directs the differential signal activation between luteinizing hormone and chorionic gonadotropin. Int. J. Biol. Macromol. 2025. Vol. 318. Pt. 3. 145247. https://doi.org/10.1016/j.ijbiomac.2025.145247
- Lin H.H. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int. J. Mol. Sci. 2025. Vol. 26. No. 2. P. 552. https://doi.org/10.3390/ijms26020552
- Madsen J.J., Ye L., Frimurer T.M., Olsen O.H. Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures. Protein Sci. 2022. Vol. 31. No. 11. e4456. https://doi.org/10.1002/pro.4456
- Marcinkowski P., Hoyer I., Specker E. et al. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy. Thyroid. 2019. Vol. 29. No. 1. P. 111–123. https://doi.org/10.1089/thy.2018.0349
- Mendonça-Reis E., Guimarães-Nobre C.C., Teixeira-Alves L.R., Miranda-Alves L., Berto-Junior C. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes. Anemia. 2024. Vol. 2024. 7924015. https://doi.org/10.1155/2024/7924015
- Mezei M., Latif R., Davies T.F. Modeling TSH Receptor Dimerization at the Transmembrane Domain. Endocrinology. 2022. Vol. 163. No. 12. bqac168. https://doi.org/10.1210/endocr/bqac168
- Michalek K., Morshed S.A., Latif R., Davies T.F. TSH receptor autoantibodies. Autoimmun. Rev. 2009. Vol. 9. No. 2. P. 113–116. https://doi.org/10.1016/j.autrev.2009.03.012
- Mirchandani-Duque M., Choucri M., Hernández-Mondragón J.C. et al. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. Membranes (Basel). 2024. Vol. 14. No. 5. P. 96. https://doi.org/10.3390/membranes14050096
- Morshed S.A., Davies T.F. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Horm. Metab. Res. 2015. Vol. 47. No. 10. P. 727–734. https://doi.org/10.1055/s-0035-1559633
- Mueller S., Kleinau G., Szkudlinski M.W. et al. The superagonistic activity of bovine thyroid-stimulating hormone (TSH) and the human TR1401 TSH analog is determined by specific amino acids in the hinge region of the human TSH receptor. J. Biol. Chem. 2009. Vol. 284. No. 24. P. 16317–16324. https://doi.org/10.1074/jbc.M109.005710
- Nagayama Y., Nishihara E. Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr. J. 2022. Vol. 69. No. 11. P. 1285–1293. https://doi.org/10.1507/endocrj.EJ22-0391
- Neumann S., Eliseeva E., Boutin A. et al. Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. J. Pharmacol. Exp. Ther. 2018. Vol. 364. No. 1. P. 38–45. https://doi.org/10.1124/jpet.117.244095
- Neumann S., Eliseeva E., McCoy J.G. et al. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor. J. Clin. Endocrinol. Metab. 2011. Vol. 96. No. 2. P. 548–554. https://doi.org/10.1210/jc.2010-1935
- Neumann S., Huang W., Eliseeva E. et al. A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology. 2010. Vol. 151. No. 7. P. 3454–3459. https://doi.org/10.1210/en.2010-0199
- Neumann S., Huang W., Titus S. et al. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc. Natl. Acad. Sci. U S A. 2009. Vol. 106. No. 30. P. 12471–12476. https://doi.org/10.1073/pnas.0904506106
- Neumann S., Kleinau G., Costanzi S. et al. A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology. 2008. Vol. 149. No. 12. P. 5945–5950. https://doi.org/10.1210/en.2008-0836
- Neumann S., Malik S.S., Marcus-Samuels B. et al. Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by Gs and Gi/o Proteins. Mol. Pharmacol. 2020. Vol. 97. No. 1. P. 2–8. https://doi.org/10.1124/mol.119.117382
- Neumann S., Nir E.A., Eliseeva E. et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology. 2014. Vol. 155. No. 1. P. 310–314. https://doi.org/10.1210/en.2013-1835
- Noh J.Y., Watanabe N., Ito K. et al. Safety, pharmacokinetics, and potential benefits of TSH-receptor-specific monoclonal autoantibody K1-70TM in Japanese Graves' disease patients: results of a phase 1 trial. Endocr. J. 2025. https://doi.org/10.1507/endocrj.EJ25-0043
- Núñez Miguel R., Sanders P., Allen L. et al. Structure of full-length TSH receptor in complex with antibody K1-70™. J. Mol. Endocrinol. 2022. Vol. 70. No. 1. e220120. https://doi.org/10.1530/JME-22-0120
- Núñez Miguel R., Sanders J., Chirgadze D.Y., Furmaniak J., Rees Smith B. Thyroid stimulating autoantibody M22 mimics TSH binding to the TSH receptor leucine rich domain: a comparative structural study of protein-protein interactions. J. Mol. Endocrinol. 2009. Vol. 42. No. 5. P. 381–395. https://doi.org/10.1677/JME-08-0152
- Ortiga-Carvalho T.M., Chiamolera M.I., Pazos-Moura C.C., Wondisford F.E. Hypothalamus-Pituitary-Thyroid Axis. Compr. Physiol. 2016. Vol. 6. No. 3. P. 1387–1428. https://doi.org/10.1002/cphy.c150027
- Parent E.E., Gleba J.J., Knight J.A. et al. Zirconium-89 Labeled Antibody K1-70 for PET Imaging of Thyroid-stimulating Hormone Receptor Expression in Thyroid Cancer. Mol. Imaging Biol. 2024. Vol. 26. No. 5. P. 847–857. https://doi.org/10.1007/s11307-024-01945-7
- Parra-Montes de Oca M.A., Sotelo-Rivera I., Gutiérrez-Mata A., Charli J.L., Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front. Endocrinol. (Lausanne). 2021. Vol. 12. 746924. https://doi.org/10.3389/fendo.2021.746924
- Postiglione M.P., Parlato R., Rodriguez-Mallon A. et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc. Natl. Acad. Sci. U S A. 2002. Vol. 99. No. 24. P. 15462–15467. https://doi.org/10.1073/pnas.242328999
- Prummel M.F., Brokken L.J., Meduri G. et al. Expression of the thyroid-stimulating hormone receptor in the folliculo-stellate cells of the human anterior pituitary. J. Clin. Endocrinol. Metab. 2000. Vol. 85. No. 11. P. 4347–4353. https://doi.org/10.1210/jcem.85.11.6991
- Prummel M.F., Brokken L.J., Wiersinga W.M. Ultra short-loop feedback control of thyrotropin secretion. Thyroid. 2004. Vol. 14. No. 10. P. 825–829. https://doi.org/10.1089/thy.2004.14.825
- Querat B. Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front. Endocrinol. (Lausanne). 2021. Vol. 12. 731966. https://doi.org/10.3389/fendo.2021.731966
- Rapoport B., McLachlan S.M. The thyrotropin receptor in Graves' disease. Thyroid. 2007. Vol. 17. No. 10. P. 911–922. https://doi.org/10.1089/thy.2007.0170
- Ray A.P., Thakur N., Pour N.G., Eddy M.T. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure. 2023. Vol. 31. No. 7. P. 836–847.e6. https://doi.org/10.1016/j.str.2023.05.001
- Rossi L., Paternoster M., Cammarata M., Bakkar S., Miccoli P. Levothyroxine therapy in thyroidectomized patients: ongoing challenges and controversies. Front. Endocrinol. (Lausanne). 2025. Vol. 16. 1582734. https://doi.org/10.3389/fendo.2025.1582734
- Sanders P., Young S., Sanders J. et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J. Mol. Endocrinol. 2011. Vol. 46. No. 2. P. 81–99. https://doi.org/10.1530/JME-10-0127
- Sarkar R., Bolel P., Kapoor A. et al. An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers. J. Clin. Endocrinol. Metab. 2024. Vol. 109. No. 9. P. 2306–2316. https://doi.org/10.1210/clinem/dgae114
- Schaarschmidt J., Nagel M.B.M., Huth S. et al. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. J. Biol. Chem. 2016. Vol. 291. No. 27. P. 14095–14108. https://doi.org/10.1074/jbc.M115.709659
- Schulze A., Kleinau G., Neumann S. et al. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J. 2020. Vol. 34. No. 8. P. 11243–11256. https://doi.org/10.1096/fj.202000100R
- Shpakov A.O. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int. J. Mol. Sci. 2023. Vol. 24. No. 7. 6187. https://doi.org/10.3390/ijms24076187
- Shpakov A.O. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. Front. Biosci. (Landmark Ed). 2024. Vol. 29. No. 9. P. 313. https://doi.org/10.31083/j.fbl2909313
- Smith B.R. Autoantibodies to the TSH Receptor-from discovery to understanding the mechanisms of action and to new therapeutics. Endocr. J. 2025. https://doi.org/10.1507/endocrj.EJ25-0127
- Stephenson A., Lau L., Eszlinger M., Paschke R. The Thyrotropin Receptor Mutation Database Update. Thyroid. 2020. Vol. 30. No. 6. P. 931–935. https://doi.org/10.1089/thy.2019.0807
- Szymańska K., Kałafut J., Przybyszewska A. et al. FSHR Trans-Activation and Oligomerization. Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 760. https://doi.org/10.3389/fendo.2018.00760
- Taylor P.N., Albrecht D., Scholz A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 2018. Vol. 14. No. 5. P. 301–316. https://doi.org/10.1038/nrendo.2018.18
- Trubacova R., Drastichova Z., Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front. Cell. Dev. Biol. 2022. Vol. 10. 981452. https://doi.org/10.3389/fcell.2022.981452
- Tuncel M. Thyroid Stimulating Hormone Receptor. Mol. Imaging Radionucl. Ther. 2017. Vol. 26. Suppl. 1. P. 87–91. https://doi.org/10.4274/2017.26.suppl.10
- Turcu A.F., Kumar S., Neumann S. et al. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 5. P. 2153–2159. https://doi.org/10.1210/jc.2013-1149
- Urizar E., Montanelli L., Loy T. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 2005. Vol. 24. No. 11. P. 1954–1964. https://doi.org/10.1038/sj.emboj.7600686
- Vassart G., Dumont J.E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 1992. Vol. 13. No. 3. P. 596–611. https://doi.org/10.1210/edrv-13-3-596
- Vieira I.H., Rodrigues D., Paiva I. The Mysterious Universe of the TSH Receptor. Front. Endocrinol. (Lausanne). 2022. Vol. 13. 944715. https://doi.org/10.3389/fendo.2022.944715
- Von Gall C., Weaver D.R., Moek J. et al. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann. N. Y. Acad. Sci. 2005. Vol. 1040. P. 508–511. https://doi.org/10.1196/annals.1327.105
- Wide L., Eriksson K. Thyrotropin N-glycosylation and Glycan Composition in Severe Primary Hypothyroidism. J. Endocr. Soc. 2021. Vol. 5. No. 4. bvab006. https://doi.org/10.1210/jendso/bvab006
- Wondisford F.E. The thyroid axis just got more complicated. J. Clin. Invest. 2002. Vol. 109. No. 11. P. 1401–1402. https://doi.org/10.1172/JCI15865
- Xiang P., Latif R., Morshed S., Davies T.F. Hypothyroidism Induced by a TSH Receptor Peptide-Implications for Thyroid Autoimmunity. Thyroid. 2024. Vol. 34. No. 12. P. 1513–1521. https://doi.org/10.1089/thy.2024.0089
- Xiang T., Zhang S., Li Q. et al. GPHB5 Is a Biomarker in Women With Metabolic Syndrome: Results From Cross-Sectional and Intervention Studies. Front. Endocrinol. (Lausanne). 2022. Vol. 13. 893142. https://doi.org/10.3389/fendo.2022.893142
- Xu S., Peng Y., Li X. et al. TSHR in thyroid cancer: bridging biological insights to targeted strategies. Eur. Thyroid J. 2025. Vol. 14. No. 4. e240369. https://doi.org/10.1530/ETJ-24-0369
- Yang Q., Li J., Kou C. et al. Presence of TSHR in NK Cells and Action of TSH on NK Cells. Neuroimmunomodulation. 2022. Vol. 29. No. 1. P. 77–84. https://doi.org/10.1159/000516925
- Yeste D., Baz-Redón N., Antolín M. et al. Genetic and Functional Studies of Patients with Thyroid Dyshormonogenesis and Defects in the TSH Receptor (TSHR). Int. J. Mol. Sci. 2024. Vol. 25. No. 18. 10032. https://doi.org/10.3390/ijms251810032
- Ząbczyńska M., Kozłowska K., Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int. J. Mol. Sci. 2018. Vol. 19. No. 9. 2792. https://doi.org/10.3390/ijms19092792
- Zhang Y., Tan Y., Zhang Z. et al. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J. Med. Chem. 2024. Vol. 67. No. 18. P. 16018–16034. https://doi.org/10.1021/acs.jmedchem.4c01525
- Zoenen M., Urizar E., Swillens S., Vassart G., Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nat. Commun. 2012. Vol. 3. 1007. https://doi.org/10.1038/ncomms1991
Supplementary files


