New insights into TECAR therapy in gynecological practice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern aesthetic gynecology aims to implement gentle and effective techniques that can correct age-related and postpartum changes, improve the quality of life for patients, and raise their comfort level. In this context, TECAR therapy is of particular interest, since it is a physiotherapy technique based on radiofrequency energy that contributes to active tissue regeneration, improves microcirculation, and restores the functional state of the intimate area.

The article discusses the mechanisms of TECAR therapy, its indications and contraindications, as well as the results of clinical studies. The physiological effect of this type of therapy is caused by the electromagnetic field with a frequency of approximately 0.5 MHz. The effects of this technique include increased deep and superficial blood flow, vasodilation, increased temperature, removal of excess fluid, and increased cell proliferation.

The ability to induce a thermotherapy effect in deep target tissues (deep muscle layers, joints, and tendons) without excessive increase in surface (skin) temperature makes TECAR therapy well tolerated by patients and suitable for the treatment of various diseases in urogynecology. Therefore, the use of TECAR therapy may be an option for treatment, especially in disorders where blood flow dysfunction plays an important role in the onset and persistence of pain and dysfunction (e.g., chronic pelvic pain syndrome, vulvodynia, and myofascial pain syndrome).

Conclusion. The results of the analysis demonstrate the high potential of TECAR therapy in gynecology. However, in order to develop protocols for the use of this technique, it is necessary to conduct further research focusing on long-term effects of therapy and the optimal parameters for its effect.

About the authors

Tatiana A. Teterina

Academician V.I. Kulakov National MedicalResearch Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: t_teterina@oparina4.ru
ORCID iD: 0000-0003-0990-2302

PhD, obstetrician-gynecologist, ultrasound specialist, Department of Aesthetic Gynecology and Rehabilitation

Russian Federation, Moscow

Milada S. Ardzinba

Academician V.I. Kulakov National MedicalResearch Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: ardzinba.milada@mail.ru
ORCID iD: 0000-0002-8371-3617

resident, obstetrician-gynecologist

Russian Federation, Moscow

Inna A. Apolikhina

Academician V.I. Kulakov National MedicalResearch Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Email: apolikhina@inbox.ru

Dr. Med. Sci., Professor, Head of the Department of Aesthetic gynecology and Rehabilitation, Professor at the Department of Obstetrics, Gynecology, Perinatology, and Reproductology

Russian Federation, Moscow; Moscow

References

  1. Fu T., Lineaweaver W.C., Zhang F., Zhang J. Role of shortwave and microwave diathermy in peripheral neuropathy. J. Int. Med. Res. 2019; 47(8): 3569-79. https://dx.doi.org/10.1177/0300060519854905
  2. Hare G.M., Evans P.J., Mackinnon S.E., Best T.J., Bain J.R., Szalai J.P. et al. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast. Reconstr. Surg. 1992; 89(2): 251-8.
  3. Fairbank J.C., Couper J., Davies J.B., O'Brien J.P. The Oswestry low back pain disability questionnaire. Physiotherapy. 1980; 66(8): 271-3.
  4. Roland M.O., Morris R.W. A study of the natural history of back pain. Part 1: development of a reliable and sensitive measure of disability in low-back pain. Spine (Phila Pa 1976). 1983; 8(2): 141-4. https://dx.doi.org/10.1097/ 00007632-198303000-00004
  5. Siereńska J., Sotomska Z., Madej-Łukasiak D., Wąż P., Grzybowska M.E. The use of capacitive and resistive energy transfer in postpartum pain management in women after perineal trauma. J. Clin. Med. 2023; 12(18): 6077. https:// dx.doi.org/10.3390/jcm12186077
  6. Bretelle F., Fabre C., Golka M., Pauly V., Roth B., Bechadergue V. et al. Capacitive-resistive radiofrequency therapy to treat postpartum perineal pain: A randomized study. PLoS One. 2020; 15(4): e0231869. https://dx.doi.org/10.1371/ journal.pone.0231869
  7. Оразов М.Р., Силантьева Е.С., Токтар Л.Р., Хамошина М.Б., Демяшкин Г.А., Кампос Е.С. Эффективность направленной контактной диатермии при несостоятельности тазового дна. Исследования и практика в медицине. 2018; 5(S1): 65. [Orazov M.R., Silantieva E.S., Toktar L.R., Khamoshina M.B., Demyashkin G.A., Kampos E.S. The effectiveness of directional contact diathermy in case of pelvic floor failure. Research and Practical Medicine Journal. 2018; 5(S1): 65 (in Russian)].
  8. Саидова А.С., Аполихина И.А., Тарнаева Л.А., Свидзинская Н.В. Негормональное лечение женщин с генитоуринарным менопаузальным синдромом. Акушерство и гинекология. 2025; 1: 106-12. [Saidova A.S., Apolikhina I.A., Tarnaeva L.A., Svidzinskaya N.V. Non-hormonal treatment of women with genitourinary syndrome of menopause. Obstetrics and Gynecology. 2025; (1): 106-12 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.240
  9. Маланова Т.Б., Ипатова М.В., Кубицкая Ю.В., Николаева А.В., Игнатьева А.А. Физические факторы в раннем послеродовом периоде в акушерском стационаре. Акушерство и гинекология. 2025; 5: 178-85. [Malanova T.B., Ipatova M.V., Kubitskaya Yu.V., Nikolaeva A.V., Ignatyeva A.A. Physical factors in the early postpartum period in an obstetric unit. Obstetrics and Gynecology. 2025; (5): 178-85 (in Russian)]. https:// dx.doi.org/10.18565/aig.2025.89
  10. Hernández-Bule M.L., Paíno C.L., Trillo M.Á., Úbeda A. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell. Physiol. Biochem. 2014; 34(5): 1741-55. https://dx.doi.org/10.1159/000366375
  11. Grimnes S. Joule effect and temperature rise. In: Grimnes S., Martinsen Ø.G. Bioimpedance and Bioelectricity Basics. London: Academic Press; 2000: 71-3.
  12. López-De-Celis C., Hidalgo-García C., Pérez-Bellmunt A., Fanlo-Mazas P., González-Rueda V., Tricás-Moreno J.M. et al. Thermal and non-thermal effects off capacitive-resistive electric transfer application on the Achilles tendon and musculotendinous junction of the gastrocnemius muscle: a cadaveric study. BMC Musculoskelet. Disord. 2020; 21(1): 46. https://dx.doi.org/10.1186/s12891-020-3072-4
  13. González-Gutiérrez M.D., López-Garrido Á., Cortés-Pérez I., Obrero-Gaitán E., León-Morillas F., Ibáñez-Vera A.J. Effects of non-invasive radiofrequency diathermy in pelvic floor disorders: a systematic review. Medicina (Kaunas). 2022; 58(3): 437. https://dx.doi.org/10.3390/medicina58030437
  14. Argüelles D., Saitua A., Miraz R., Calle-González N., Requena F., Nocera I. et al. The application of a single session of capacitive resistive electric transfer 24 h before exercise modifies the accelerometric pattern in standardbred racing trotters. BMC Vet. Res. 2024; 20(1): 217. https://doi.org/10.1186/ s12917-024-04039-2
  15. Bito T., Tashiro Y., Suzuki Y., Kajiwara Y., Zeidan H., Kawagoe M. et al. Acute effects of capacitive and resistive electric transfer (CRet) on the Achilles tendon. Electromagn. Biol. Med. 2019; 38(1): 48-54. https://dx.doi.org/10.1080/ 15368378.2019.1567525
  16. Tranquilli C., Ganzit G.P., Ciufetti A., Bergamo P., Combi F. Multicentre study on TECAR® therapy in sports pathologies. FMSI Institute of Sports medicine, Milano, Italy; 2009.
  17. Notarnicola A., Maccagnano G., Gallone M.F., Covelli I., Tafuri S., Moretti B. Short term efficacy of capacitiveresistive diathermy therapy in patients with low back pain: a prospective randomized controlled trial. J. Biol. Regul. Homeost. Agents. 2017; 31(2): 509-15.
  18. Niajalili M., Sedaghat M., Reazasoltani A., Akbarzade Baghban A.R., Naimi S.S. Effect of capacitive Tecar therapy on foot pain and tactile sensation in patients with type 2 diabetes. J. Rehab. 2020; 21(3): 304-19. https://dx.doi.org/10.32598/RJ.21.3.60.5
  19. Nicoletti G., Perugini P., Bellino S., Capra P., Malovini A., Jaber O. et al. Scar remodeling with the association of monopolar capacitive radiofrequency, electric stimulation, and negative pressure. Photomed. Laser Surg. 2017; 35(5): 246-58. https://dx.doi.org/10.1089/pho.2016.4180
  20. Hernández-Bule M.L., Toledano-Macías E., Naranjo A., de Andrés-Zamora M., Úbeda A. In vitro stimulation with radiofrequency currents promotes proliferation and migration in human keratinocytes and fibroblasts. Electromagn. Biol. Med. 2021; 40(3): 338-52. https://dx.doi.org/10.1080/15368378.2021.1938113
  21. Moisés da Silva G.V., Dávila F.J., Rosito T.E., Martins F.E. Global perspective on the management of Peyronie's disease. Front. Reprod. Health. 2022; 4: 863844. https://dx.doi.org/10.3389/frph.2022.863844
  22. Fernández-Cuadros M.E., Kazlauskas S.G., Albaladejo-Florin M.J., Robles-López M., Laborda-Delgado A., de la Cal-Alvarez C. et al. Efectividad de la rehabilitación multimodal (biofeedback más radiofrecuencia capacitiva-resistiva) sobre el dolor pélvico crónico y la dispareunia: estudio prospectivo y revisión de la bibliografía [Effectiveness of multimodal rehabilitation (biofeedback plus capacitive-resistive radiofrequency) on chronic pelvic pain and dyspareunia: prospective study and literature review]. Rehabilitacion (Madr). 2020; 54(3): 154-61. Spanish. https:// dx.doi.org/10.1016/j.rh.2020.02.005
  23. Trout K.K. The neuromatrix theory of pain: Implications for selected nonpharmacologic methods of pain relief for labor. J. Midwifery Women’s Health. 2004; 49(6): 482-8. https://dx.doi.org/10.1016/j.jmwh.2004.07.009
  24. Gulliver B.G., Fisher J., Roberts L. A new way to assess pain in laboring women: replacing the rating scale with a ʺcopingʺ algorithm. Nurs. Women’s Health. 2008; 12(5): 404-8. https://dx.doi.org/10.1111/j.1751-486X.2008.00364.x
  25. Osti R., Pari C., Salvatori G., Massari L. Tri-length laser therapy associated to tecar therapy in the treatment of low-back pain in adults: a preliminary report of a prospective case series. Lasers Med. Sci. 2015; 30(1): 407-12. https:// dx.doi.org/10.1007/s10103-014-1684-3
  26. Park Y.R., Sultan M.T., Park H.J., Lee J.M., Ju H.W., Lee O.J. et al. NF-kB signaling is key in the wound healing processes of silk fibroin. Acta Biomater. 2018; 67: 183-95. https://dx.doi.org/10.1016/j.actbio.2017.12.006
  27. Meyer P.F., de Oliveira P., Silva F.K.B.A., da Costa A.C.S., Pereira C.R.A., Casenave S. et al. Radiofrequency treatment induces fibroblast growth factor 2 expression and subsequently promotes neocollagenesis and neoangiogenesis in the skin tissue. Lasers Med. Sci. 2017; 32(8): 1727-36. https:// dx.doi.org/10.1007/s10103-017-2238-2
  28. Kumaran B., Watson T. Thermal build-up, decay and retention responses to local therapeutic application of 448 kHz capacitive resistive monopolar radiofrequency: a prospective randomised crossover study in healthy adults. Int. J. Hyperthermia. 2015; 31: 883-95. https://dx.doi.org/10.3109/ 02656736.2015.1092172
  29. Yokota Y., Sonoda T., Tashiro Y., Suzuki Y., Kajiwara Y., Zeidan H. et al. Effect of capacitive and resistive electric transfer on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. J. Phys. Ther. Sci. 2018; 30(5): 719-25. https://dx.doi.org/10.1589/ jpts.30.719
  30. Hernandez-Bule M.L., Angeles Trillo M., Martinez-Garcia M.A., Abilahoud C., Ubeda A. Chondrogenic differentiation of adipose-derived stem cells by radiofrequency electric stimulation. J. Stem Cell Res. Ther. 2017; 7(12). https://dx.doi.org/10.4172/2157-7633.1000407
  31. Hernández-Bule M.L., Martínez-Botas J., Trillo M.Á., Paíno C.L., Úbeda A. Antiadipogenic effects of subthermal electric stimulation at 448 KHz on differentiating human mesenchymal stem cells. Mol. Med. Rep. 2016; 13(5): 3895-903. https://dx.doi.org/10.3892/ mmr.2016.5032
  32. Friedl P., Bröcker E.B. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 2000; 57(1): 41-64. https:// dx.doi.org/10.1007/s000180050498
  33. Tashiro Y., Hasegawa S., Yokota Y., Nishiguchi S., Fukutani N., Shirooka H. et al. Effect of capacitive and resistive electric transfer on haemoglobin saturation and tissue temperature. Int. J. Hyperth. 2017; 33(6): 696-702. https://dx.doi.org/10.1080/02656736.2017.1289252
  34. Julius D., Basbaum A.I. Molecular mechanisms of nociception. Nature. 2001; 413(6852): 203-10. https://dx.doi.org/10.1038/35093019
  35. Luo J., Feng J., Liu S., Walters E.T., Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell. Mol. Life Sci. 2015; 72(17): 3201-23. https://dx.doi.org/10.1007/s00018-015-1904-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».