The spectrum of genetic causes of female infertility: modern molecular mechanisms and clinical significance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Objective: To summarize the current data on the role of genetic factors in female infertility, including disorders of oocyte maturation, fertilization, embryonic developmental arrest, and to consider the possibilities of molecular genetic diagnosis.

Materials and methods: The article presents a review of recent Russian and foreign publications on the molecular and chromosomal etiology of female infertility with focus on phenotypes associated with pathogenic gene variants, as well as modern methods of molecular analysis (WES, WGS, GWAS).

Results: Female infertility affects 10-15% of reproductive-aged couples, while up to 30% of cases remain idiopathic. Genetic factors play a leading role in the pathogenesis of infertility, especially with repeated ART failures. Chromosomal and monogenic mechanisms have been identified in both syndromic and non-syndromic forms. More than 90 genes associated with premature ovarian insufficiency have been found; TUBB8, PATL2, TRIP13, TBPL2, ZP1-3, WEE2, CDC20, BTG4, PADI6, and other genes determine the phenotypes of disorders of oogenesis, fertilization and early embryogenesis. Key molecular complexes have been identified, including the subcortical maternal complex (SCMC), which is critically important for early embryo development. The use of NGS technologies made it possible to better understand the genetic basis of infertility and to identify new clinical variants.

Conclusion: The genetic etiology of female infertility is more complex than previously believed; therefore, it is necessary to integrate molecular genetic methods into the practice of obstetricians, gynecologists and reproductive medicine specialists. Precision diagnosis and genetic counseling can increase the effectiveness of ART programs and help personalize the choice of treatment options.

About the authors

Yana O. Martirosyan

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: marti-yana@yandex.ru
ORCID iD: 0000-0002-9304-4410

PhD, obstetrician-gynecologist, Researcher at the F. Paulsen Research and Educational Center for ART with the Clinical Department

Russian Federation, Moscow

Nadezhda S. Pavlova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: pav.nad.ser@gmail.com
ORCID iD: 0000-0001-5619-2695

Junior Researcher at the Department of Clinical Genetic of the Institute of Reproductive Genetic

Russian Federation, Moscow

Irina S. Mukosey

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: i_mukosei@oparina4.ru
ORCID iD: 0000-0002-2225-8366

Researcher at the Laboratory of Genomic Data Analysis of the Institute of Reproductive Genetic

Russian Federation, Moscow

Tatiana A. Nazarenko

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: t.nazarenko@mail.ru
ORCID iD: 0000-0002-5823-1667

Dr. Med. Sci., Professor, Head of the Institute of Reproductive Medicine

Russian Federation, Moscow

References

  1. Solovova O.A., Chernykh V.B. Genetics of oocyte maturation defects and early embryo development arrest. Genes. (Basel). 2022; 13(11): 1920. https:// dx.doi.org/10.3390/genes13101920
  2. Van Der Kelen A., Okutman O., Javey E., Serdarogullari M., Janssens C., Ghosh M.S. et al. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum. Reprod. Update. 2023; 29(2): 218-32. https:// dx.doi.org/10.1093/humupd/dmac040
  3. Volozonoka L., Miskova A., Kornejeva L., Kempa I., Bargatina V., Gailite L. A systematic review and standardized clinical validity assessment of genes involved in female reproductive failure. Reproduction. 2022; 163(6): 351-63. https://dx.doi.org/10.1530/REP-21-0486
  4. Shekari S., Stankovic S., Gardner E.J., Hawkes G., Kentistou K.A., Beaumont R.N. et al. Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency. Nat. Med. 2023; 29(7): 1692-9. https://dx.doi.org/10.1038/s41591-023-02405-5
  5. Ebru H., Dahan M.H., Sezer O., Başbuğ A., Kaan H., Güngör N.D. et al. TUBB8 mutations as a cause of oocyte maturation abnormalities: presentation of oocyte and embryo profiles and novel mutations. Reprod. Biomed. Online. 2023; 47(5): 103257. https://dx.doi.org/10.1016/j.rbmo.2023.06.012
  6. Jia Y., Li K., Zheng C., Tang Y., Bai D., Yin J. et al. Identification and rescue of a novel TUBB8 mutation that causes the first mitotic division defects and infertility. J. Assist. Reprod. Genet. 2020; 37(11): 2713-22. https:// dx.doi.org/10.1007/s10815-020-01945-w
  7. Voros C., Sapantzoglou I., Athanasiou D., Varthaliti A., Mavrogianni D., Bananis K. et al. Molecular guardians of oocyte maturation: a systematic review on TUBB8, KIF11, and CKAP5 in IVF outcomes. Int. J. Mol. Sci. 2025; 26(13), 6390. https://dx.doi.org/10.3390/ijms26136390
  8. Wan X., Zhang Y., Lan M., Pan M.H., Tang F., Zhang H.L. et al. Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes. Environ. Mol. Mutagen. 2018; 59(9): 805-12. https:// dx.doi.org/10.1002/em.22213
  9. Ding Z.M., Huang C.J., Jiao X.F., Wu D., Huo L.J. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken). 2017; 74(10): 369-78. https://dx.doi.org/10.1002/cm.21388
  10. Zhou H., Cai Y.L., Luo Q., Zou L., Yin Y.X., Chen Y. et al. High carrier frequency of pathogenic PATL2 gene mutations predicted in population: a bioinformatics-based approach. Front. Genet. 2023; 14: 1097951. https://dx.doi.org/10.3389/fgene.2023.1097951
  11. Alfieri C., Chang L., Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature. 2018; 559(7713): 274-8. https://dx.doi.org/10.1038/s41586-018-0281-1
  12. Zhang Z., Li B., Fu J., Li R., Diao F., Li C. et al. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2020; 107(1): 15-23. https://doi.org/10.1016/ j.ajhg.2020.05.001
  13. Chotiner J.Y., Leu N.A., Yang F., Cossu I.G., Guan Y., Lin H. et al. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. bioRxiv [Preprint]. 2023: 2023.09.25.559355. https:// doi.org/10.1101/2023.09.25.559355
  14. He W.B., Zhang Y.X., Tan C., Meng L.L., Liu G., Li Y. et al. A recurrent mutation in TBPL2 causes diminished ovarian reserve and female infertility. J. Genet. Genomics. 2020; 47(12): 785-8. https://dx.doi.org/10.1016/j.jgg.2020.09.004
  15. Yang P., Chen T., Wu K., Hou Z., Zou Y., Li M. et al. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum. Reprod. 2021; 36(7): 2011-9. https://dx.doi.org/10.1093/humrep/deab094
  16. Jiang Z.Y., Fan H.Y. Five questions toward mRNA degradation in oocytes and preimplantation embryos: when, who, to whom, how, and why? Biol. Reprod. 2022; 107(1): 62-75. https://dx.doi.org/10.1093/biolre/ioac014
  17. Wan X., Hu H.L., Sun J.Q., Meng F., Gong F., Lin G. et al. Identification of novel compound heterozygous ZFP36L2 variants implicated in oocyte maturation defects and female infertility. J. Assist. Reprod. Genet. 2024; 41(8): 1955-63. https://dx.doi.org/10.1007/s10815-024-03154-1
  18. Wang W.J., Guo J., Shi J.Z., Li Q., Chen B.B., Pan Z.Q. et al. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol. Med. 2023; 15(6): e17177. https://dx.doi.org/10.15252/emmm.202217177
  19. Huang L.L., Li W.Q., Dai X.X., Zhao S., Xu B., Wang F.S. et al. Biallelic variants in MAD2L1BP (p31comet) cause female infertility characterized by oocyte maturation arrest. eLife. 2023; 12: e85649. https://dx.doi.org/10.7554/eLife.85649
  20. Yang P., Chen T., Liu Y., Hou Z., Wu K., Cao Y. et al. The critical role of ZP genes in female infertility characterized by empty follicle syndrome and oocyte degeneration. Fertil. Steril. 2021; 115(5): 1259-69. https://dx.doi.org/10.1016/ j.fertnstert.2020.11.003
  21. Sun L.W., Tong K.Y., Liu W.W., Tian Y., Liu D.Y., Huang G.N. et al. Novel variants in ZP1, ZP2 and ZP3 associated with empty follicle syndrome and abnormal zona pellucida. Reprod Biomed Online. 2023; 46(5): 847-55. https://dx.doi.org/10.1016/j.rbmo.2023.01.010
  22. Shen Y., Guo J., Zhang X.G., Wang X., Zhu S.M., Chen D.J. et al. Identification of a heterozygous variant of ZP2 as a novel cause of empty follicle syndrome in humans and mice. Hum. Reprod. 2022; 37(4): 859-72. https:// dx.doi.org/10.1093/humrep/deac026
  23. Wang W.J., Qu R.G., Dou Q., Wu F.Y., Wang W.J., Chen B.B. et al. Homozygous variants in PANX1 cause human oocyte death and female infertility. Eur. J. Hum. Genet. 2021; 29(9): 1396-404. https://dx.doi.org/10.1038/ s41431-020-00807-4
  24. Wu X.W., Liu P.P., Zou Y., Xu D.F., Zhang Z.Q., Cao L.Y. et al. A novel heterozygous variant in PANX1 is associated with oocyte death and female infertility. J. Assist. Reprod. Genet. 2022; 39(8): 1901-8. https:// doi.org/10.1007/s10815-022-02566-1
  25. Епачинцева Е.А., Селятицкая В.Г., Митрофанов И.М., Артюхова В.Г., Лебедева Е.М., Галустян Е.А., Кирс Е.Ю. Количественные и качественные нарушения в спермограмме и дополнительных анализах эякулята у мужчин из бесплодных пар. Проблемы репродукции. 2017; 23(6): 90-6. [Epanchintseva E.A., Seliatitskaia V.G., Mitrofanov I.M., Artuchova V.G., Lebedeva E.M., Galustyn E.A., Kirs E.Yu. Quantitative and qualitative abnormalities in spermogram and other semen tests in men from infertile couples. Russian Journal of Human Reproduction. 2017; 23(6): 90-6 (in Russian)]. https://dx.doi.org/10.17116/repro201723690-96
  26. Yang X., Shu L., Cai L., Sun X., Cui Y., Liu J. Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. J. Assist. Reprod. Genet. 2019; 36(5): 965-71. https://dx.doi.org/10.1007/ s10815-019-01418-9
  27. Dai J., Zheng W., Dai C., Guo J., Lu C.F., Gong F. et al. New biallelic mutations in WEE2: expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil. Steril. 2019; 111(3): 510-8. https:// dx.doi.org/10.1016/j.fertnstert.2018.11.013
  28. Huang L.L., Wang F.S., Kong S., Wang Y., Song G.J., Lu F.T. et al. Novel mutations in CDC20 are associated with female infertility due to oocyte maturation abnormality and early embryonic arrest. Reprod. Sci. 2021; 28(7): 1930-8. https://dx.doi.org/10.1007/s43032-021-00524-3
  29. Zhao L., Guan Y.H., Meng Q.X., Wang W.J., Wu L., Chen B.B. et al. Identification of novel mutations in CDC20: expanding the mutational spectrum for female infertility. Front. Cell Dev. Biol. 2021; 9: 647130. https://dx.doi.org/10.3389/fcell.2021.647130
  30. Burkart A.D., Xiong B., Baibakov B., Jiménez-Movilla M., Dean J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 2012; 197(1): 37-44. https://dx.doi.org/10.1083/jcb.201112094
  31. Kang I., Koo M., Yoon H., Park B.S., Jun J.H., Lee J. Ovastacin: an oolemma protein that cleaves the zona pellucida to prevent polyspermy. Clin. Exp. Reprod. Med. 2023; 50(3): 154-9. https://dx.doi.org/10.5653/cerm.2023.05981
  32. Zeng Y., Chen B.B., Sun Y.M., Yang A.J., Wu L., Li B. et al. Bi-allelic variants in ASTL cause abnormal fertilization or oocyte maturation defects. Hum. Mol. Genet. 2023; 32(14): 2326-34. https://dx.doi.org/10.1093/hmg/ddad070
  33. Yu C., Ji S.Y., Sha Q.Q., Dang Y., Zhou J.J., Zhang Y.L. et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 2016; 23(5): 387-94. https://dx.doi.org/10.1038/nsmb.3204
  34. Sha Q.Q., Zhang J., Fan H.Y. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biol. Reprod. 2019; 101(3): 579-90. https://dx.doi.org/10.1093/biolre/ioz012
  35. Zheng W., Zhou Z., Sha Q.Q., Niu X.L., Sun X.X., Shi J.Z. et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am. J. Hum. Genet. 2020; 107(1): 24-33. https://dx.doi.org/10.1016/j.ajhg.2020.05.010
  36. Massana M.T., Rodriguez A., Vassena R. Exonic genetic variants associated with unexpected fertilization failure and zygotic arrest after ICSI: a systematic review. Zygote. 2023; 31(4): 316-41. https://dx.doi.org/10.1017/S096719942300014X
  37. Anvar Z., Chakchouk I., Demond H., Sharif M., Kelsey G, Van den Veyver I.B. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. Genes (Basel). 2021; 12(8): 1214. https://dx.doi.org/10.3390/genes12081214
  38. Qian J.H., Nguyen N.M.P., Rezaei M., Huang B., Tao Y., Zhang X. et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur. J. Hum. Genet. 2018; 26(7): 1007-13. https://dx.doi.org/10.1038/ s41431-018-0141-3
  39. Jentoft I.M.A., Bauerlein F.J.B., Welp L.M., Cooper B.H., Petrovic A., So C. et al. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell. 2023; 186(24): 5308-27.e25. https://dx.doi.org/10.1016/j.cell.2023.10.003
  40. Monk D., Delgado M.S., Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017; 154(6): R161-70. https:// dx.doi.org/10.1530/REP-17-0465
  41. Mahadevan S., Sathappan V., Utama B., lorenzo I., Kaskar K., Van den Veyver I.B. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci. Rep. 2017; 7: 44667. https://dx.doi.org/10.1038/srep44667
  42. Mu J., Wang W.J., Chen B.B., Wu L., Li B., Mao X.Y. et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J. Med. Genet. 2019; 56(7): 471-80. https://dx.doi.org/10.1136/jmedgenet-2018-105936
  43. Nakamura T., Okamoto I., Sasaki K., Yabuta Y., Iwatani C., Tsuchiya H. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature. 2016; 537(7618): 57-62. https://dx.doi.org/10.1038/nature19096
  44. Liu D.H., Wang X.Y., He D.J., Sun C.L., He X.C., Yan L.Z. et al. Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Res. 2018; 28(10): 1481-93. https://dx.doi.org/10.1101/gr.233437.117
  45. Wang X.Q., Song D., Mykytenko D., Kuang Y.P., Lv Q.F., Li B. et al. Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest. Reprod. BioMed. Online. 2018; 36(6): 698-704. https://dx.doi.org/10.1016/j.rbmo.2018.03.009
  46. He D.J., Wang L., Zhang Z.B., Guo K., Li J.Z., He X.C. et al. Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. Zool. Res. 2018; 39(6): 387-95. https:// dx.doi.org/10.24272/j.issn.2095-8137.2018.067
  47. Gopinathan L., Szmyd R., Low D., Diril M.K., Chang H.Y., Coppola V. et al. Emi2 is essential for mouse spermatogenesis. Cell Rep. 2017; 20(3): 697-708. https://dx.doi.org/10.1016/j.celrep.2017.06.033
  48. Wang W.J., Wang W.J., Xu Y., Shi J.Z., Fu J., Chen B.B. et al. FBXO43 variants in patients with female infertility characterized by early embryonic arrest. Hum. Reprod. 2021; 36(8): 2392-402. https://dx.doi.org/10.1093/humrep/ deab131
  49. Wang W.J., Miyamoto Y.C., Chen B.B., Shi J.Z., Diao F.Y., Zheng W. et al. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J. Clin. Invest. 2023; 133(2): e159951. https://dx.doi.org/10.1172/ JCI159951
  50. Zhang Y.L., Zhang W., Ren P.P., Hu H.L., Tong X.M., Zhang S.P. et al. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol. Med. 2021; 13(12): e14887. https://dx.doi.org/10.15252/emmm.202114887

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».