Functional capabilities of digital solutions and telemedicine technologies in cardiological rehabilitation
- Authors: Sadovski K.A.1,2, Bukatov V.V.1,2
-
Affiliations:
- Belgorod State National Research University
- St. Joasaph Belgorod Regional Clinical Hospital
- Issue: Vol 36, No 11 (2025)
- Pages: 95-101
- Section: From Practice
- URL: https://ogarev-online.ru/0236-3054/article/view/362952
- DOI: https://doi.org/10.29296/25877305-2025-11-17
- ID: 362952
Cite item
Abstract
The article provides an overview of the literature on the study of the functional capabilities and limitations of digital solutions in cardiac rehabilitation, identifies the main barriers to implementation, and formulates recommendations.
About the authors
K. A. Sadovski
Belgorod State National Research University; St. Joasaph Belgorod Regional Clinical Hospital
Author for correspondence.
Email: mafin.alen@yandex.ru
ORCID iD: 0009-0002-5409-4981
Russian Federation, Belgorod; Belgorod
V. V. Bukatov
Belgorod State National Research University; St. Joasaph Belgorod Regional Clinical Hospital
Email: mafin.alen@yandex.ru
ORCID iD: 0000-0002-1122-1816
SPIN-code: 9804-1557
Candidate of Medical Sciences
Russian Federation, Belgorod; BelgorodReferences
- Hindricks G., Potpara T., Dagres N. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2020; 41 (32): 3038–100. doi: 10.1093/eurheartj/ehaa612
- Steinhubl S.R., Muse E.D., Topol E.J. Can mobile health technologies transform health care? JAMA. 2013; 310 (22): 2395–6. doi: 10.1001/jama.2013.281078
- Рожнев В.В., Дуванова С.П., Садовников А.В. и др. Обзор мобильных приложений, используемых врачами и пациентами с сердечно-сосудистыми заболеваниями. Врач. 2022; 33 (10): 45–7 [Rozhnev V., Duvanov S., Sadovnikov A. et al. Overview of mobile applications used by physicians and patients with cardiovascular diseases. Vrach. 2022; 33 (10): 45–7 (in Russ.)]. doi: 10.29296/25877305-2022-10-08
- Котельникова Е.В., Сенчихин В.Н., Липчанская Т.П. Дистанционная кардиологическая реабилитация в реализации стратегии вторичной профилактики у пациентов с кардиоваскулярными заболеваниями. Профилактическая медицина. 2021; 24 (5): 15–21 [Kotelnikova E.V., Senchikhin V.N., Lipchanskaya T.P. Remote cardiology rehabilitation in the strategy implementation of the secondary prevention in patients with cardiovascular diseases. Russian Journal of Preventive Medicine. 2021; 24 (5): 15–21 (in Russ.)]. doi: 10.17116/profmed20212405115
- Rawstorn J.C., Gant N., Direito A. et al. Telehealth exercise-based cardiac rehabilitation: a systematic review and meta-analysis. Heart. 2016; 102 (15): 1183–92. doi: 10.1136/heartjnl-2015-308966
- Соловьев И.А., Курочкина О.Н. Приложения искусственного интеллекта в кардиологии: обзор. Российский кардиологический журнал. 2024; 29 (11S): 5673 [Soloviev I.A., Kurochkina O.N. Artificial intelligence applications in cardiology: a review. Russian Journal of Cardiology. 2024; 29 (11S): 5673 (in Russ.)]. doi: 10.15829/1560-4071-2024-5673
- Ambrosetti M., Abreu A., Corrà U. et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2021; 28 (5): 460–95. doi: 10.1177/2047487320913379
- Frederix I., Solmi F., Piepoli M.F. et al. Cardiac telerehabilitation: a novel cost-efficient care delivery model. Eur J Prev Cardiol. 2017; 24 (16): 1708–17. doi: 10.1177/2047487317732274
- Zanni V., Sappa R., Moschino L. et al. Effectiveness of remote monitoring in heart failure management. Curr Cardiol Rep. 2021; 23 (12): 175. doi: 10.1007/s11886-021-01611-2
- Fernandes G., Veiga P., Martins J. Digital cardiac rehabilitation: State of the art. Curr Problems Cardiol. 2020; 46 (7): 100774. doi: 10.1016/j.cpcardiol.2020.100774
- Mitropoulos A.C., Angelopoulos G., Lambadiari V. et al. Telerehabilitation and remote patient monitoring in the management of cardiac rehabilitation. Front Cardiovasc Med. 2024; 11: 1410616. doi: 10.3389/fcvm.2024.1410616
- Etiwy M., Akhrass Z., Gillinov L. et al. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc Diagn Ther. 2019; 9 (3): 262–71. doi: 10.21037/cdt.2019.04.08
- Wang M., Liu C., Li T., Song R. e al. Removal of motion artifacts in PPG during intensive exercise. Sensors. 2019; 19 (15): 3312. doi: 10.3390/s19153312
- Piwek L., Ellis D.A., Andrews S. et al. The rise of consumer health wearables: promises and barriers. PLoS Medicine. 2016; 13 (2): e1001953. doi: 10.1371/journal.pmed.1001953
- Banerjee A., Chen S., Fraefel C. et al. Machine learning for prediction of cardiac events: a systematic review. BMC Medicine. 2021; 19: 279. doi: 10.1186/s12916-021-01940-7
- Rajkomar A., Dean J., Kohane I. Machine learning in medicine. N Engl J Med. 2019; 380 (14): 1347–58. doi: 10.1056/NEJMra1814259
- Hannun A.Y., Rajpurkar P., Haghpanahi M. et al. Cardiologist-level arrhythmia detection and classification in ambulatory ECGs using a deep neural network. Nat Med. 2019; 25 (1): 65–9. doi: 10.1038/s41591-018-0268-3
- Attia Z.I., Kapa S., Lopez-Jimenez F. et al. Screening for cardiac contractile dysfunction using an AI-enabled ECG. Nat Med. 2019; 25 (1): 70–4. doi: 10.1038/s41591-018-0240-2
- Ouyang D., He B., Ghorbani A. et al. Video-based AI for beat-to-beat assessment of cardiac function (EchoNet-Dynamic). Nature. 2020; 580 (7802): 252–6. doi: 10.1038/s41586-020-2145-8
Supplementary files
