Rehabilitation of patients after hip armorosistry using biofeedback methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents a comprehensive analysis of the use of biofeedback methods (BFB) in the rehabilitation of patients after hip arthroplasty. Based on a systematic review of the literature for the period 2019–2024, modern approaches to the use of various types of BFB, including electromyographic, ultrasound and inertial feedback, are studied. Pathogenetic mechanisms of the postoperative period are considered and the effectiveness of BFB technologies at different stages of rehabilitation is substantiated. The results of clinical studies demonstrating the benefits of using BFB in restoring motor function and forming correct motor stereotypes are analyzed. Practical recommendations for the use of BFB methods are developed, taking into account the time stages of rehabilitation and individual characteristics of patients.

About the authors

R. Z. Nurlygayanov

Bashkir State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: radiknur@list.ru
ORCID iD: 0000-0002-3026-5814
SPIN-code: 2864-0259

Associate Professor, Candidate of Medical Sciences

Russian Federation, Ufa

L. T. Gilmutdinova

Bashkir State Medical University, Ministry of Health of Russia

Email: radiknur@list.ru
ORCID iD: 0000-0003-3420-8400
SPIN-code: 8940-5713

Professor, MD

Russian Federation, Ufa

B. R. Gilmutdinov

Bashkir State Medical University, Ministry of Health of Russia

Email: radiknur@list.ru
ORCID iD: 0000-0002-2119-1737
SPIN-code: 5680-8162

Associate Professor, Candidate of Medical Sciences

Russian Federation, Ufa

D. R. Iseeva

Bashkir State Medical University, Ministry of Health of Russia

Email: radiknur@list.ru
ORCID iD: 0000-0002-1511-3310
SPIN-code: 7051-3206

Associate Professor, Candidate of Medical Sciences

Russian Federation, Ufa

E. R. Faisova

Bashkir State Medical University, Ministry of Health of Russia

Email: radiknur@list.ru
ORCID iD: 0000-0002-3021-1808
SPIN-code: 8303-6434

Associate Professor, Candidate of Medical Sciences

Russian Federation, Ufa

D. R. Nurlygayanova

Kazan (Volga Region) Federal University

Email: radiknur@list.ru
ORCID iD: 0000-0002-8896-6875
SPIN-code: 3087-2743
Russian Federation, Kazan

References

  1. Varacallo M.A., Luo T.D., Johanson N.A. Total Hip Arthroplasty Techniques. StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
  2. Вороков А.А., Ткаченко А.Н., Хромов А.А. и др. Эндопротезирование тазобедренного сустава: определение показаний к операции (научный обзор). Здоровье и образование в XXI веке. 2020; 6: 77–82 [Vorokov A.A., Tkachenko A.N., Khromov A.A. et al. Hip joint arthroplasty: determining indications for surgery (scientific review). Health and Education in the XXI Century. 2020; 6: 77–82 (in Russ.)]. doi: 10.26787/nydha-2686-6838-2020-22-6-40-50
  3. Горянная Н.А., Ишекова Н.И., Ишеков А.Н. и др. Динамика показателей опорной симметрии и баланса в результате стабилотренинга на втором этапе реабилитации у пациентов после эндопротезирования тазобедренного сустава. Современные проблемы науки и образования. 2020; 3: 138–44 [Goryannaya N.A., Ishekova N.I., Ishekov A.N. et al. Dynamics of support symmetry and balance indicators as a result of stabilotraining at the second stage of rehabilitation in patients after hip arthroplasty. Modern Problems of Science and Education. 2020; 3: 138–44 (in Russ.)].
  4. Белова О.А., Локтионов А.С. Оценка эффективности ранней реабилитации больных после тотального эндопротезирования тазобедренного сустава. Молодой ученый. 2021; 25: 43–5 [Belova O.A., Loktionov A.S. Evaluation of the effectiveness of early rehabilitation of patients after total hip arthroplasty. Young Scientist. 2021; 25: 43–5 (in Russ.)]
  5. Fisher L., Srikusalanukul W., Fisher A. et al. Liver function parameters in hip fracture patients: relations to age, adipokines, comorbidities and outcomes. Int J Med Sci. 2015; 12 (2): 100–15. doi: 10.7150/ijms.10696
  6. Дубров В.Э., Шелупаев А.А., Арутюнов Г.П. и др. Переломы проксимального отдела бедренной кости. Клиника, диагностика и лечение (Клинические рекомендации, в сокращении). Вестник травматологии и ортопедии им. Н.Н. Приорова. 2021; 28 (4): 49–89 [Dubrov V.E., Shelupaev A.A., Arutyunov G.P. et al. Fractures of the proximal femur. Clinical presentation, diagnosis and treatment (Clinical guidelines, abridged). N.N. Priorov Journal of Traumatology and Orthopedics. 2021; 28(4): 49–89 (in Russ.)]. doi: 10.17816/vto100763
  7. Дедов Д.В. Остеопороз у пожилых пациентов: распространенность, патогенез, клиника, профилактика осложнений. Врач. 2021; 32 (7): 82–5 [Dedov D. Osteoporosis in elderly patients: prevalence, pathogenesis, clinical features, and prevention of complications. Vrach 2021; 32 (7): 82–5 (in Russ.)]. doi: 10.29296/25877305-2021-07-14
  8. Мельникова Е.А., Старкова Е.Ю. Ранняя реабилитация пациентов после тотального эндопротезирования тазобедренного сустава. В сб.: IV конгресс ОРТОБИОЛОГИЯ 2023 «Случаи пациентов – от теории к внедрению»: Тезисы докладов. М., 2023; с. 112–4 [Melnikova E.A., Starkova E.Yu. Early rehabilitation of patients after total hip arthroplasty. In: IV Congress ORTHOBIOLOGY 2023 "Patient cases – from theory to implementation": Abstracts. Moscow, 2023; рр. 112–4 (in Russ.)].
  9. Patel I., Nham F., Zalikha A.K. et al. Epidemiology of total hip arthroplasty: demographics, comorbidities and outcomes. Arthroplasty. 2023; 5 (1): 2. doi: 10.1186/s42836-022-00156-1
  10. Колесников С.В., Дьячкова Г.В., Комарова Э.С. Применение различных реабилитационных мероприятий в восстановительном лечении больных с имплантатом тазобедренного сустава. Гений ортопедии. 2020; 26 (2): 254–60 [Kolesnikov S.V., Dyachkova G.V., Komarova E.S. Application of various rehabilitation measures in the restorative treatment of patients with hip implants. Genius of Orthopedics. 2020; 26 (2): 254–60 (in Russ.)]. doi: 10.18019/1028-4427-2020-26-2-254-260
  11. Groot L., Latijnhouwers D.A.J.M., Reijman M. et al. Recovery and the use of postoperative physical therapy after total hip or knee replacement. BMC Musculoskelet Disord. 2022; 23 (1): 666. doi: 10.1186/s12891-022-05629-z
  12. Giggins O.M., Persson U.M., Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013; 10: 60. doi: 10.1186/1743-0003-10-60
  13. Konnyu K.J., Pinto D., Cao W. et al. Rehabilitation for Total Hip Arthroplasty: A Systematic Review. Am J Phys Med Rehabil. 2023; 102 (1): 11–8. doi: 10.1097/PHM.0000000000002007
  14. Гильмутдинова Л.Т., Фаизова Э.Р., Гильмутдинов Б.Р. и др. Физическая реабилитация в травматологии и ортопедии: монография. Уфа: ФГБОУ ВО БГМУ Минздрава России, 2023; 263 c. [Gilmutdinova L.T., Faizova E.R., Gilmutdinov B.R. et al. Physical Rehabilitation in Traumatology and Orthopedics: the monograph. Ufa: Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Healthcare of the Russian Federation, 2023; p. 263 (in Russ.)].
  15. Синеокий А.Д., Плиев Д.Г., Аболин А.Б. и др. Методики хирургического лечения повреждений средней ягодичной мышцы при тотальном эндопротезировании тазобедренного сустава. Хирургия. Журнал им. Н.И. Пирогова. 2019; 7: 96–104 [Sineokiy A.D., Pliev D.G., Abolin A.B. et al. Surgical techniques for treating gluteus medius muscle injuries during total hip arthroplasty. Pirogov Russian Journal of Surgery. 2019; 7: 96–104 (in Russ.)]. doi: 10.17116/hirurgia201907196
  16. Malik K., Dua A. Advancing Patient Care With Biofeedback. StatPearls. Treasure Island (FL): StatPearls Publishing, 2025.
  17. Колесник А.И., Солодилов И.М., Сизых С.Г. и др. Способ предупреждения возникновения ранних вывихов бедра и рецидива наружной ротационной контрактуры тазобедренного сустава после эндопротезирования больных коксартрозом. Патент РФ №2445034, 2012 [Kolesnik A.I., Solodilov I.M., Sizykh S.G. et al. Method for preventing early hip dislocations and recurrence of external rotation contracture of the hip joint after arthroplasty in patients with coxarthrosis. Patent RF №2445034, 2012. (in Russ.)]
  18. Escamilla R., Michelini A., Andrysek J. Biofeedback Systems for Gait Rehabilitation of Individuals with Lower-Limb Amputation: A Systematic Review. Sensors. 2020; 20 (6): 1628. doi: 10.3390/s20061628
  19. Esposito E.R., Choi H.S., Darter B.J., et al. Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation? PLoS One. 2017; 12: e0171786. doi: 10.1371/journal.pone.0171786
  20. Илларионова А.В., Кривощеков С.Г., Ильин А.А. и др. Физиологические особенности формирования двигательной координации на основе тренировок с биологической обратной связью. Физиология человека. 2022; 48 (4): 5–21 [Illarionova A.V., Krivoshchekov S.G., Il'in A.A. et al. Physiological features of motor coordination formation based on biofeedback training. Human Physiology. 2022; 48 (4): 5–21 (in Russ.)]. doi: 10.31857/S013116462204004X
  21. Kibushi B. Electromyography biofeedback to improve dynamic motion. IntechOpen, 2023. doi: 10.5772/intechopen.1002064
  22. Мельникова Е.А., Рудь И.М., Рассулова М.А. Стабилотренинг с биологической обратной связью в реабилитации пациентов с заболеваниями опорно-двигательного аппарата. Доктор.Ру. 2019; 1 (156): 31–4 [Mel'nikova E.A., Rud' I.M., Rassulova M.A. Biofeedback stabilotraining in rehabilitation of patients with musculoskeletal disorders. Doctor.Ru. 2019; 1 (156): 31–4 (in Russ.)]. doi: 10.31550/1727-2378-2019-156-1-53-58
  23. McManus L., De Vito G., Lowery M.M. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation Engineers. Front Neurol. 2020; 11: 576729. doi: 10.3389/fneur.2020.576729
  24. Marin L., Vandoni M., Zaza G. et al. The Effects of Insole-Based Visual Feedback on Weight-Bearing in Patients Undergoing Total Hip Replacement. Int J Environ Res Public Health. 2021; 18 (7): 3346. doi: 10.3390/ijerph18073346
  25. Kokic T., Pavic R., Vuksanic M. et al. Effects of Electromyographic Biofeedback-Assisted Exercise on Functional Recovery and Quality of Life in Patients after Total Hip Arthroplasty: A Randomized Controlled Trial. J Pers Med. 2023; 13 (12): 1716. doi: 10.3390/jpm13121716
  26. Lin S., Zhu B., Zheng Y. et al. Effect of real-time ultrasound imaging for biofeedback on trunk muscle contraction in healthy subjects: a preliminary study. BMC Musculoskelet Disord. 2021; 22 (1): 142. doi: 10.1186/s12891-021-04006-0
  27. Valera-Calero J.A., Ojedo-Martin C., Fernández-De-Las-Peñas C. et al. Reliability and Validity of Panoramic Ultrasound Imaging for Evaluating Muscular Quality and Morphology: A Systematic Review. Ultrasound Med Biol. 2021; 47 (2): 185–200. doi: 10.1016/j.ultrasmedbio.2020.10.009
  28. Valera-Calero J.A., Fernández-de-Las-Peñas C., Varol U. et al. Ultrasound Imaging as a Visual Biofeedback Tool in Rehabilitation: An Updated Systematic Review. Int J Environ Res Public Health. 2021; 18 (14): 7554. doi: 10.3390/ijerph18147554
  29. Погонченкова И.В., Макарова М.Р., Сомов Д.А. и др. Реабилитация пациентов после эндопротезирования. Московская медицина. 2024; 3 (61): 66–73 [Pogonchenkova I.V., Makarova M.R., Somov D.A. et al. Rehabilitation of patients after arthroplasty. Moscow Medicine. 2024; 3 (61): 66–73 (in Russ.)].
  30. Буримский Н.А. Перспективы использования виртуальной реальности и искусственного интеллекта в реабилитации. Молодой ученый. 2023; 47: 57–8 [Burimskiy N.A. Prospects for using virtual reality and artificial intelligence in rehabilitation. Young Scientist. 2023; 47: 57–8 (in Russ.)].
  31. Zhao J., Gao H., Yang C. et al. Upper and Lower Limb Training Evaluation System Based on Virtual Reality Technology. Sensors. 2024; 24: 6909. doi: 10.3390/s24276909
  32. Garcia-Sánchez M., Obrero-Gaitán E., Piñar-Lara M. et al. Early rehabilitation using virtual reality-based therapy can enhance hip function and self-perception of improvement following total hip arthroplasty: A systematic review and meta-analysis. Geriatric Nursing. Geriatr Nurs. 2024; 60: 593–601. doi: 10.1016/j.gerinurse.2024.10.020
  33. Krinkin K., Shichkina Y., Ignatyev A. Co-evolutionary hybrid intelligence. 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). 2021; рр. 112–5. doi: 10.1109/DCNA53427.2021.9587653
  34. Dias Correia F., Nogueira A., Magalhães I. et al. Digital Versus Conventional Rehabilitation After Total Hip Arthroplasty: A Single-Center, Parallel-Group Pilot Study. JMIR Rehabil Assist Technol. 2019; 6 (1): e14523. doi: 10.2196/14523

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».