The use of osteoinductive materials in the treatment of bone pathologies and severe fractures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Treatment of bone pathologies and severe fractures is an urgent healthcare problem that requires effective and innovative approaches to ensure complete restoration of bone tissue and improve the quality of life of patients. Traditional methods of bone tissue regeneration, such as transplantation of bone autografts and allografts, have a number of limitations, including a shortage of donor material and the risk of complications. In this regard, it is of interest to use osteoinductive materials that promote accelerated healing and restoration of bone structures.

The article discusses modern osteoinductive materials, their types, mechanisms of action and clinical application. Particular attention is paid to their role in the treatment of complex fractures and bone pathologies, such as osteoporosis and osteomyelitis.

Data from clinical studies have been analyzed demonstrating the high effectiveness of osteoinductive materials in the treatment of complex fractures, osteomyelitis, osteonecrosis and other bone pathologies. Benefits of using these materials include accelerated healing, reduced risk of complications, minimized need for autografts, and improved integration with bone tissue.

About the authors

P. A. Markov

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: ereminps@gmail.com
ORCID iD: 0000-0002-4803-4803

Cand. Sci. (Biol.)

 

Russian Federation, Moscow

E. A. Rozhkova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: ereminps@gmail.com
ORCID iD: 0000-0002-2440-9244

Dr. Sci. (Biol.)

Russian Federation, Moscow

P. S. Eremin

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470

Dr. Sci. (Med.)

Russian Federation, Moscow

L. A. Marchenkova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Author for correspondence.
Email: ereminps@gmail.com
ORCID iD: 0000-0003-1886-124X

MD

Russian Federation, Moscow

References

  1. World Health Organization. Global Health Observatory data repository. 2021. URL: https://www.who.int/data/gho
  2. Ren J., Li Z., Liu W. et al. Demineralized bone matrix for repair and regeneration of maxillofacial defects: A narrative review. J Dent. 2024; 143: 104899. doi: 10.1016/j.jdent.2024.104899
  3. Li M., Chen Q., Liu Y. Incorporation of BMP-2 into collagen-based hydrogels for enhanced bone regeneration. Advanced Healthcare Materials. 2021; 10 (15): 2101234. doi: 10.1016/j.msec.2017.03.296
  4. Kołodziejska B., Kaflak A., Kolmas J. Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review. Materials (Basel). 2020; 13 (7): 1748. doi: 10.3390/ma13071748
  5. Ielo I., Calabrese G., De Luca G., et al. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022; 23 (17): 9721. doi: 10.3390/ijms23179721
  6. Bhuiyan D.B., Middleton J.C., Tannenbaum R. et al. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed. 2016; 27 (11): 1139–54. doi: 10.1080/09205063.2016.1184121
  7. Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015; 11 (1): 45–54. doi: 10.1038/nrrheum.2014.164
  8. Loi F., Córdova L.A., Pajarinen J. et al. Inflammation, fracture and bone repair. Bone. 2016; 86: 119–30. doi: 10.1016/j.bone.2016.02.020
  9. Oliveira T.C., Gomes M.S., Gomes A.C. The Crossroads between Infection and Bone Loss. Microorganisms. 2020; 8 (11): 1765. doi: 10.3390/microorganisms8111765
  10. Марченкова Л.А. Снижение риска переломов при постменопаузальном остеопорозе: обзор эффективной и безопасной фармакологической терапии с высоким уровнем приверженности. Вестник восстановительной медицины. 2023; 22 (4): 129–37 [Marchenkova L.A. Reducing Fracture Risk in Postmenopausal Osteoporosis: a Review of Effective and Safe Pharmacological Therapy Providing Adherence to Treatment. Bulletin of Rehabilitation Medicine. 2023; 22 (4): 129–37 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-4-129-137
  11. Terkawi M.A., Matsumae G., Shimizu T. et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci. 2022; 23 (3): 1786. doi: 10.3390/ijms23031786
  12. Yifan G., Kailong Q., Yige W. et al. Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair. Nano TransMed. 2024; 3: 100033. doi: 10.1016/j.ntm.2024.100033
  13. Chenard K.E., Teven C.M., He T.C. et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012; 2012: 601549. doi: 10.1155/2012/601549
  14. Tanvir M.A.H., Khaleque M.A., Kim G-H. et al. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics. 2024; 9 (4): 230. doi: 10.3390/biomimetics9040230
  15. Henkel J., Woodruff M.A., Epari D.R. et al. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective. Bone Res. 2013; 1 (3): 216–48. doi: 10.4248/BR201303002
  16. Kazimierczak P., Przekora A. Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. Coatings. 2020; 10 (10): 971. doi: 10.3390/coatings10100971
  17. Ozdemir M.T., Kir M.Ç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop. 2011; 45 (3): 226–30. doi: 10.4103/0019-5413.80040
  18. Vdoviaková K., Jenca A., Jenca A. Jr. et al. Regenerative Potential of Hydroxyapatite-Based Ceramic Biomaterial on Mandibular Cortical Bone: An In Vivo Study. Biomedicines. 2023; 11 (3): 877. doi: 10.3390/biomedicines11030877
  19. Binlateh T., Thammanichanon P., Rittipakorn P. et al. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel). 2022; 7 (2): 34. doi: 10.3390/biomimetics7020034
  20. Georgeanu V.A., Gingu O., Antoniac I.V. et al. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl Sci. 2023; 13 (14): 8471. doi: 10.3390/app13148471
  21. Sui P., Yu T., Sun S. et al. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol. 2023; 11: 1303678. doi: 10.3389/fbioe.2023.1303678
  22. Che Z., Song Y., Zhu L. et al. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet. 2022; 13: 1037190. doi: 10.3389/fgene.2022.1037190
  23. Hoshi M., Taira M., Sawada T. et al. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. Materials. 2022; 15 (24): 8802. doi: 10.3390/ma15248802
  24. Lee S.S., Huang B.J., Kaltz S.R. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013; 34 (2): 452–9. doi: 10.1016/j.biomaterials.2012.10.005
  25. Mirkhalaf M., Men Y., Wang R. et al. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023; 156: 110–24. doi: 10.1016/j.actbio.2022.04.014
  26. Xu D., Xu Z., Cheng L. et al. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon. 2022; 8 (6): e09748. doi: 10.1016/j.heliyon.2022.e09748
  27. Xing Y., Qiu L., Liu D. et al. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023; 11: 1240861. doi: 10.3389/fbioe.2023.1240861
  28. Погонченкова И.В., Орлова Е.В., Сомов Д.А. и др. Эффективность телемедицинских технологий в комплексной программе реабилитации пациентов после транспедикулярной фиксации позвоночника. Вестник восстановительной медицины. 2023; 22 (1): 98–109 [Pogonchenkova I.V., Orlova E.V., Somov D.A. et al. Telemedicine Technologies Efficacy in a Complex Rehabilitation Program: аn Open Controlled Study of 64 Patients after Transpedicular Spine Fixation. Bulletin of Rehabilitation Medicine. 2023; 22 (1): 98–109 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-1-98-109
  29. Jeon H.J., Jung A., Kim H.J. et al. Enhanced Osteoblast Adhesion and Proliferation on Vacuum Plasma-Treated Implant Surface. Appl Sci. 2022; 12 (19): 9884. doi: 10.3390/app12199884
  30. Gao Y., Zhang X., Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics. 2023; 15 (10): 2405. doi: 10.3390/pharmaceutics15102405
  31. Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22 (3): 61–8 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I. et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22 (3): 61–8 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-61-68

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».