Предотвращение отказов двигателя внутреннего сгорания путем включения цифрового аналитического модуля глубокого обучения

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Установлено, что мониторинг-диагностика технического состояния и эффективности работы ДВС в режиме реального времени достаточно затратен не столько в сборе данных, сколько в адекватности модели обработки данных и их интерпретации. Разработан алгоритм создания библиотеки программы глубокого обучения на основе имеющегося банка данных о работе ДВС на различных нагрузочных режимах. В результате мониторинга ДВС выполнено видео эндоскопирования элементов цилиндропоршневой группы по установлению отклонений от нормативного состояния, проведена обработка данных с помощью ELM327 и программы Forscan. Предложено обработку данных на первом этапе проводить комбинированным методом, идентификацию отклонений вести на основе экспертного анализа, сопоставляя их с результатом принятия решения цифровым модулем. Это позволит дать оценку обоснованности принятия решения программным модулем искусственного интеллекта на основе глубокого обучения и исключить появление ошибочного решения.

作者简介

N. Sevryugina

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: nssevr@yandex.ru
Moscow, Russia

A. Arzhenovskiy

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: nssevr@yandex.ru
Moscow, Russia

A. Apatenko

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

编辑信件的主要联系方式.
Email: nssevr@yandex.ru
Moscow, Russia

参考

  1. Вайнштейн В. И., Вайнштейн И. И. Оптимизационные задачи формирования смеси функций распределения наработок до отказа элементов технических систем // Проблемы машиностроения и надежности машин. 2021. № 3. С. 107–112. https://doi.org/10.31857/S0235711921030160
  2. Путинцев С. В., Аникин С. А., Стрельникова С. С. Обоснование и результаты численного моделирования струйного маслоснабжения сопряжения “цилиндр–поршень” в быстроходном четырехтактном двигателе внутреннего сгорания // Проблемы машиностроения и надежности машин. 2023. № 3. С. 89–99.
  3. Stoumpos S., Bolbot V., Theotokatos G., Boulougouris E. Safety performance assessment of a marine dual fuel engine by integrating failure mode, effects and criticality analysis with simulation tools // Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2022. V. 236(2). P. 376–393. https://doi.org/10.1177/14750902211043423
  4. Арженовский А. Г., Чичиланов И. И. Совершенствование методики и средств диагностирования дизельных двигателей: монография. Зерноград: Азово-Черноморский инженерный институт, 2017. 176 с.
  5. Wang D., Zhang M., Xu Y., Lu W., Yang J., Zhang T. Metric-based meta-learning model for few-shot fault diagnosis under multiple limited data conditions // Mechanical Systems and Signal Processing. 2021. V. 155. 107510. https://doi.org/10.1016/j.ymssp.2020.107510
  6. Tao F. et al. Digital twin driven prognostics and health management for complex equipment // CIRP Annals – Manufacturing Technology. 2018. V. 67 (1). P. 169. https://doi.org/10.1016/j.cirp.2018.04.055
  7. Пастухов А. Г., Тимашов Е. П., Бахарев Д. Н. Обобщенная оценка основных факторов при проектировании техники и технологий в агроинженерии // Инновации в АПК: проблемы и перспективы. 2021. № 1 (29). С. 17–26.
  8. Голубев И. Г., Мишуров Н. П., Федоренко В. Ф. и др. Цифровизация в сфере технического обслуживания и ремонта сельскохозяйственной техники: Монография. М.: Росинформагротех, 2023. 80 с.
  9. Soloviev D. A., Rusinov A. V., Zagoruyko M. G. et al. Investigation of the movement of multi-support frontal machines // Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture: International Scientific and Practical Conference, Saratov, 20–24.10.2021. London: IOP Publishing Ltd, 2022. P. 012059. https://doi.org/10.1088/1755-1315/979/1/012059
  10. Sevryugina N. S., Volkov E. A., Litovchenko E. P. Justification for Remote Control of Construction and Road-Making Machines // Modern Applied Science. 2014. V. 8(5). Р. 179. https://doi.org/10.5539/mas.v8n5p179
  11. Golubev I. G., Apatenko A. S., Sevryugina N. S. et al. A Maintenance and Repair Decision Support Model for Transport and Technological Machines // J. Mach. Manuf. Reliab. 2023. V. 52. P. 391–399. https://doi.org/10.3103/S1052618823040064
  12. Deng M., Deng A., Shi Y., Liu Y., Xu M. A novel sub-label learning mechanism for enhanced cross-domain fault diagnosis of rotating machinery // Reliability Engineering & System Safety. 2022. V. 225. P. 108589. https://doi.org/10.1016/j.ress.2022.108589
  13. Wang H., Xu J., Yan R., Gao R. X. A New Intelligent Bearing Fault Diagnosis Method Using SDP Representation and SE-CNN // IEEE Transactions on Instrumentation and Measurement. 2019. V. 1–1. 12 р. https://doi.org/10.1109/tim.2019.2956332
  14. Тынченко Я. А., Кукарцев В. В., Башмур К. А., Сяоган Ву, Севрюгина Н. С. Вероятностный анализ показателей надежности насосов с помощью нейронной сети // Горный информационно-аналитический бюллетень. 2024. № 7–1. С. 126–136. https://doi.org/10.25018/0236_1493_2024_71_0_126
  15. Lebedev A. T., Arzhenovskiy A., Zhurba V. V. et al. Operational Management of Reliability of Technical Systems in the Agro-Industrial Complex // XIV International Scientific Conference “INTERAGROMASH 2021”: Precision Agriculture and Agricultural Machinery Industry. Rostov-on-Don, 24–26.02.2021. Springer Verlag: Springer Verlag, 2022. V. 1. P. 79–87. https://doi.org/10.1007/978-3-030-81619-3_9

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».