STRUCTURAL AND KINETIC FEATURES OF HYDROGENATION IN SUPERCOOLED METALLIC MELTS AND AMORPHOUS ALLOYS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review considers current understanding of the effect of hydrogen on amorphization, structural evolution, and phase formation in supercooled metallic melts and amorphous alloys. Experimental and theoretical data demonstrating the key role of hydrogen in modifying the local atomic structure, including changes in coordination numbers, short-range order transformation, and stimulation of the formation of polytetrahedral cluster complexes, are summarized. Particular attention is paid to the effect of hydrogen on diffusion parameters, temperature ranges of phase transformations, and mechanisms of coherent nanocrystallization, including the formation of quasicrystalline phases. Features of glass transition in the presence of hydrogen, as well as thermodynamic and kinetic effects of doping, are described. The review emphasizes the potential of controlled hydrogenation and doping for targeted control of the structure and properties of metallic glasses, including the development of hydrogen-resistant membrane materials and highly efficient catalysts.

About the authors

V. A. Polukhin

Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: p.valery47@yandex.ru
Yekaterinburg, Russia

S. H. Estemirova

Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: esveta100@mail.ru
Yekaterinburg, Russia

References

  1. Suryanarayana C., Inoue A. Bulk Metallic Glasses. Technology & Engineering. Second Edition // CRC Press. 2017. 520 p.
  2. Cheng Y.Q., Ma E. // Prog. Mater. Sci. 2011. 56. P. 379–473. https://doi.org/10.1016/j.pmatsci.2010.12.002
  3. Zhang Y., Zuo T.T., Cheng Y.Q., Liaw P.K. // Sci. Rep. 2013. 3. 1455. https://doi.org/10.1038/srep01455
  4. Takeuchi, A.; Gao, M.C.; Qiao, J.; Widom, M. High-Entropy Metallic Glasses; Springer: Cham, Switzerland, 2016; pp. 445–468.
  5. Polukhin V.A., Vatolin N.A. // Russ. Chem. Rev. 2015. 84(5). P. 498–539. https://doi.org/10.1070/RCR4411
  6. Lubchenko V., Wolynes P.G. // Annu. Rev. Phys. Chem. 2007. 58. P. 235–266. https://doi.org/10.1146/annurev.physchem.58.032806.104653
  7. Ding Y.Q., Cheng Y.Q., Sheng H., Ma E. // Phys. Rev. B. 2012. 85. 060201. https://doi.org/10.1103/PhysRevB.85.060201
  8. Tarjus G., Kivelson D. // J. Chem. Phys. 1995. 103. P. 3071–3073. https://doi.org/10.1021/acs.jpcb.0c07318
  9. Debenedetti P.G., Stillinger F.H. // Nature. 2001. 410. P. 259–267. https://doi.org/10.1038/35065704
  10. Angell C.A. // J. Non-Cryst. Solids. 1991. 131–133. P. 13–31. https://doi.org/10.1016/0022-3093(91)90266-9
  11. Andersen H.C. // Proc. Natl. Acad. Sci. U.S.A. 2005. 102. P. 6686–6691. https://doi.org/10.1073/pnas.0500946102
  12. Kraposhin V.S., Talis A.L. // Russ. Metall. 2016. 2. P. 101–108. https://doi.org/10.1134/S0036029516020087
  13. Polukhin V.A., Vatolin N.A., Kurbanova E.D. // Russ. Metall. 2018. 2. P. 121–135. https://doi.org/10.1134/S0036029518020167
  14. Полухин В.А., Ватолин Н.А. Моделирование разупорядоченных и нано-структурированных фаз. Изд-во УрО РАН. Екатеринбург, 2011. 363 с.
  15. Kirchheim R. // Prog. Mater. Sci. 1988. 32. P. 261–325. https://doi.org/10.1016/0079-6425(88)90010-2
  16. Eliaz N., Fuks D., Eliezer D. // Acta Mater. 1999. 47. P. 2981–2989. https://doi.org/10.1016/S1359-6454(99)00157-3
  17. Mahjoub R., Laws K.J., Hamilton N.E. et al. // Comput. Mater. Sci. 2016. 125. P. 197–205. https://doi.org/10.1016/j.commatsci.2016.08.049
  18. Dong F., Chu Y., He M. et al. // J. Mater. Sci. Technol. 2022. 102. P. 36–45. https://doi.org/10.1016/j.jmst.2021.04.037
  19. Полухин В.А., Сидоров Н.И., Ватолин Н.А // Расплавы. 2018. № 5. С. 495–534. https://doi.org/10.1134/S0235010618050110
  20. Mansour A.N. // Phys. Rev. B. 2002. № 65(13). 134207. https://doi.org/10.1103/PhysRevB.65.134207
  21. Wei S., Yang F., Bednarcik J. et al. // Nat. Commun. 2013. № 4. 2083. https://doi.org/10.1038/ncomms3083
  22. Soklaski R., Tran V., Nussinov Z. et al. // Philos. Mag. 2016. № 96(12). P. 1212–1227. https://doi.org/10.1080/14786435.2016.1158427
  23. Kelton K.F. // J. Phys.: Condens. Matter. 2017. № 29. 023002. https://doi.org/10.1088/0953-8984/29/2/023002
  24. Doye J.P.K., Wales D.J., Zetterling F.H.M. et al. // J. Chem. Phys. 2003. 118. P. 2792–2799. https://doi.org/10.1063/1.1534831
  25. Polukhin V.A., Pastukhov E.A., Sidorov N.I. // Phys. Met. Metallogr. 1984. № 57(3). P. 176–179.
  26. Turnbull D. // Contemp. Phys. 1969. № 10(5). P. 473–481. https://doi.org/10.1080/00107516908204405
  27. Vendt H.R., Abraham F.F. // Phys. Rev. Lett. 1978. 41. P. 1244–1248. https://doi.org/10.1103/PhysRevLett.41.1244
  28. Belyakova R.M., Polukhin V.A., Kurbanova E.D. // Met. Sci. Heat Treat. 2016. № 58(3-4). P. 187–191. https://doi.org/10.1007/s11041-016-9986-7
  29. Jayalakshmi S., Choi Y.G., Kim Y.C. et al. // Intermetallics. 2010. № 18(10). P. 1988–1993. https://doi.org/10.1016/j.intermet.2010.03.001
  30. Polukhin V.A., Belyakova R.M., Rigmant L.K. // Russ. Metall. 2010. № 8. P. 681–698. https://doi.org/10.1134/S0036029510080045
  31. Wang B., Huang Z., Zhang Y. et al. // Trans. Mater. 2025. № 1(4). 100067. https://doi.org/10.1016/j.tramat.2025.100067
  32. Hao S., Sholl D.S. // J. Membr. Sci. 2010. № 350(1-2). P. 402–409. https://doi.org/10.1016/j.memsci.2010.01.017
  33. Lee B.M., Lee B.J. // Metall. Mater. Trans. A. 2014. № 45(6). P. 2915–2916. https://doi.org/10.1007/s11661-014-2230-4
  34. Shuang F., Ji Y., Wei Z. et al. // Acta Mater. 2025. 289. 120924. https://doi.org/10.1016/j.actamat.2025.120924
  35. Polukhin V.A., Sidorov N.I., Evard E.A. et al. // Russ. Metall. 2001. № 2. P. 131–135.
  36. Liu L., Wu Z.F., Zhang J. // J. Alloys Compd. 2002. 339(1-2). P. 90–95. https://doi.org/10.1016/S0925-8388(01)01977-6
  37. Wyse R. // Univ. Birmingham. 99 p.
  38. Su Y., Dong F., Luo L. et al. // J. Non-Cryst. Solids. 2012. 358. P. 2606–2611. https://doi.org/10.1016/j.jnoncrysol.2012.06.014
  39. Dong F., Lu S., Zhang Y. et al. // J. Alloys Compd. 2017. 695. P. 3183–3190. https://doi.org/10.1016/j.jallcom.2016.11.319
  40. Luo L.S., Wang B.B., Dong F.Y. et al. // Acta Mater. 2019. 171. P. 216–230. https://doi.org/10.1016/j.actamat.2019.04.022
  41. Takeuchi A., Inoue A. // Mater. Trans. 2005. № 46. P. 2817–2829. https://doi.org/10.2320/matertrans.46.2817
  42. Ding J., Cheng Y.Q., Ma E. // Acta Mater. 2014. № 69. P. 343–354. https://doi.org/10.1016/j.actamat.2014.02.002
  43. Nelson D.R. // Phys. Rev. B. 1983. № 28. P. 5515–5535. https://doi.org/10.1103/PhysRevB.28.5515
  44. Hu Y.C., Li F.X., Li M.Z. et al. // Nat. Commun. 2015. № 6. 8310. https://doi.org/10.1038/ncomms9310
  45. Peng H.L., Li M.Z., Wang W.H. // Phys. Rev. Lett. 2011. 106. 135503. https://doi.org/10.1103/PhysRevLett.106.135503
  46. Granata D., Fischer E., Löffler J.F. // Acta Mater. 2015. № 99. P. 415–421. https://doi.org/10.1016/j.actamat.2015.08.001
  47. Suh D., Asoka-Kumar P., Dauskardt R.H. // Acta Mater. 2002. № 50. P. 537–551. https://doi.org/10.1016/S1359-6454(01)00359-7
  48. Xu T., Wang X.D., Dufresne E.M. et al. // Mater. Today Phys. 2021. № 17. 100351. https://doi.org/10.1016/j.mtphys.2021.100351
  49. Mahjoub R., Laws K.J., Hamilton N.E. et al. // Comput. Mater. Sci. 2016. 125. P. 197–205. https://doi.org/10.1016/j.commatsci.2016.08.049
  50. Hu Y.C., Tanaka H. // Sci. Adv. 2020. 6. P. eabd2928 (1-12). https://doi.org/10.1126/sciadv.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).