STRUCTURAL AND KINETIC FEATURES OF HYDROGENATION IN SUPERCOOLED METALLIC MELTS AND AMORPHOUS ALLOYS
- Authors: Polukhin V.A.1, Estemirova S.H.1
-
Affiliations:
- Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
- Issue: No 6 (2025)
- Pages: 691–706
- Section: Articles
- URL: https://ogarev-online.ru/0235-0106/article/view/355837
- DOI: https://doi.org/10.7868/S3034571525060116
- ID: 355837
Cite item
Abstract
This review considers current understanding of the effect of hydrogen on amorphization, structural evolution, and phase formation in supercooled metallic melts and amorphous alloys. Experimental and theoretical data demonstrating the key role of hydrogen in modifying the local atomic structure, including changes in coordination numbers, short-range order transformation, and stimulation of the formation of polytetrahedral cluster complexes, are summarized. Particular attention is paid to the effect of hydrogen on diffusion parameters, temperature ranges of phase transformations, and mechanisms of coherent nanocrystallization, including the formation of quasicrystalline phases. Features of glass transition in the presence of hydrogen, as well as thermodynamic and kinetic effects of doping, are described. The review emphasizes the potential of controlled hydrogenation and doping for targeted control of the structure and properties of metallic glasses, including the development of hydrogen-resistant membrane materials and highly efficient catalysts.
About the authors
V. A. Polukhin
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Email: p.valery47@yandex.ru
Yekaterinburg, Russia
S. H. Estemirova
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Email: esveta100@mail.ru
Yekaterinburg, Russia
References
- Suryanarayana C., Inoue A. Bulk Metallic Glasses. Technology & Engineering. Second Edition // CRC Press. 2017. 520 p.
- Cheng Y.Q., Ma E. // Prog. Mater. Sci. 2011. 56. P. 379–473. https://doi.org/10.1016/j.pmatsci.2010.12.002
- Zhang Y., Zuo T.T., Cheng Y.Q., Liaw P.K. // Sci. Rep. 2013. 3. 1455. https://doi.org/10.1038/srep01455
- Takeuchi, A.; Gao, M.C.; Qiao, J.; Widom, M. High-Entropy Metallic Glasses; Springer: Cham, Switzerland, 2016; pp. 445–468.
- Polukhin V.A., Vatolin N.A. // Russ. Chem. Rev. 2015. 84(5). P. 498–539. https://doi.org/10.1070/RCR4411
- Lubchenko V., Wolynes P.G. // Annu. Rev. Phys. Chem. 2007. 58. P. 235–266. https://doi.org/10.1146/annurev.physchem.58.032806.104653
- Ding Y.Q., Cheng Y.Q., Sheng H., Ma E. // Phys. Rev. B. 2012. 85. 060201. https://doi.org/10.1103/PhysRevB.85.060201
- Tarjus G., Kivelson D. // J. Chem. Phys. 1995. 103. P. 3071–3073. https://doi.org/10.1021/acs.jpcb.0c07318
- Debenedetti P.G., Stillinger F.H. // Nature. 2001. 410. P. 259–267. https://doi.org/10.1038/35065704
- Angell C.A. // J. Non-Cryst. Solids. 1991. 131–133. P. 13–31. https://doi.org/10.1016/0022-3093(91)90266-9
- Andersen H.C. // Proc. Natl. Acad. Sci. U.S.A. 2005. 102. P. 6686–6691. https://doi.org/10.1073/pnas.0500946102
- Kraposhin V.S., Talis A.L. // Russ. Metall. 2016. 2. P. 101–108. https://doi.org/10.1134/S0036029516020087
- Polukhin V.A., Vatolin N.A., Kurbanova E.D. // Russ. Metall. 2018. 2. P. 121–135. https://doi.org/10.1134/S0036029518020167
- Полухин В.А., Ватолин Н.А. Моделирование разупорядоченных и нано-структурированных фаз. Изд-во УрО РАН. Екатеринбург, 2011. 363 с.
- Kirchheim R. // Prog. Mater. Sci. 1988. 32. P. 261–325. https://doi.org/10.1016/0079-6425(88)90010-2
- Eliaz N., Fuks D., Eliezer D. // Acta Mater. 1999. 47. P. 2981–2989. https://doi.org/10.1016/S1359-6454(99)00157-3
- Mahjoub R., Laws K.J., Hamilton N.E. et al. // Comput. Mater. Sci. 2016. 125. P. 197–205. https://doi.org/10.1016/j.commatsci.2016.08.049
- Dong F., Chu Y., He M. et al. // J. Mater. Sci. Technol. 2022. 102. P. 36–45. https://doi.org/10.1016/j.jmst.2021.04.037
- Полухин В.А., Сидоров Н.И., Ватолин Н.А // Расплавы. 2018. № 5. С. 495–534. https://doi.org/10.1134/S0235010618050110
- Mansour A.N. // Phys. Rev. B. 2002. № 65(13). 134207. https://doi.org/10.1103/PhysRevB.65.134207
- Wei S., Yang F., Bednarcik J. et al. // Nat. Commun. 2013. № 4. 2083. https://doi.org/10.1038/ncomms3083
- Soklaski R., Tran V., Nussinov Z. et al. // Philos. Mag. 2016. № 96(12). P. 1212–1227. https://doi.org/10.1080/14786435.2016.1158427
- Kelton K.F. // J. Phys.: Condens. Matter. 2017. № 29. 023002. https://doi.org/10.1088/0953-8984/29/2/023002
- Doye J.P.K., Wales D.J., Zetterling F.H.M. et al. // J. Chem. Phys. 2003. 118. P. 2792–2799. https://doi.org/10.1063/1.1534831
- Polukhin V.A., Pastukhov E.A., Sidorov N.I. // Phys. Met. Metallogr. 1984. № 57(3). P. 176–179.
- Turnbull D. // Contemp. Phys. 1969. № 10(5). P. 473–481. https://doi.org/10.1080/00107516908204405
- Vendt H.R., Abraham F.F. // Phys. Rev. Lett. 1978. 41. P. 1244–1248. https://doi.org/10.1103/PhysRevLett.41.1244
- Belyakova R.M., Polukhin V.A., Kurbanova E.D. // Met. Sci. Heat Treat. 2016. № 58(3-4). P. 187–191. https://doi.org/10.1007/s11041-016-9986-7
- Jayalakshmi S., Choi Y.G., Kim Y.C. et al. // Intermetallics. 2010. № 18(10). P. 1988–1993. https://doi.org/10.1016/j.intermet.2010.03.001
- Polukhin V.A., Belyakova R.M., Rigmant L.K. // Russ. Metall. 2010. № 8. P. 681–698. https://doi.org/10.1134/S0036029510080045
- Wang B., Huang Z., Zhang Y. et al. // Trans. Mater. 2025. № 1(4). 100067. https://doi.org/10.1016/j.tramat.2025.100067
- Hao S., Sholl D.S. // J. Membr. Sci. 2010. № 350(1-2). P. 402–409. https://doi.org/10.1016/j.memsci.2010.01.017
- Lee B.M., Lee B.J. // Metall. Mater. Trans. A. 2014. № 45(6). P. 2915–2916. https://doi.org/10.1007/s11661-014-2230-4
- Shuang F., Ji Y., Wei Z. et al. // Acta Mater. 2025. 289. 120924. https://doi.org/10.1016/j.actamat.2025.120924
- Polukhin V.A., Sidorov N.I., Evard E.A. et al. // Russ. Metall. 2001. № 2. P. 131–135.
- Liu L., Wu Z.F., Zhang J. // J. Alloys Compd. 2002. 339(1-2). P. 90–95. https://doi.org/10.1016/S0925-8388(01)01977-6
- Wyse R. // Univ. Birmingham. 99 p.
- Su Y., Dong F., Luo L. et al. // J. Non-Cryst. Solids. 2012. 358. P. 2606–2611. https://doi.org/10.1016/j.jnoncrysol.2012.06.014
- Dong F., Lu S., Zhang Y. et al. // J. Alloys Compd. 2017. 695. P. 3183–3190. https://doi.org/10.1016/j.jallcom.2016.11.319
- Luo L.S., Wang B.B., Dong F.Y. et al. // Acta Mater. 2019. 171. P. 216–230. https://doi.org/10.1016/j.actamat.2019.04.022
- Takeuchi A., Inoue A. // Mater. Trans. 2005. № 46. P. 2817–2829. https://doi.org/10.2320/matertrans.46.2817
- Ding J., Cheng Y.Q., Ma E. // Acta Mater. 2014. № 69. P. 343–354. https://doi.org/10.1016/j.actamat.2014.02.002
- Nelson D.R. // Phys. Rev. B. 1983. № 28. P. 5515–5535. https://doi.org/10.1103/PhysRevB.28.5515
- Hu Y.C., Li F.X., Li M.Z. et al. // Nat. Commun. 2015. № 6. 8310. https://doi.org/10.1038/ncomms9310
- Peng H.L., Li M.Z., Wang W.H. // Phys. Rev. Lett. 2011. 106. 135503. https://doi.org/10.1103/PhysRevLett.106.135503
- Granata D., Fischer E., Löffler J.F. // Acta Mater. 2015. № 99. P. 415–421. https://doi.org/10.1016/j.actamat.2015.08.001
- Suh D., Asoka-Kumar P., Dauskardt R.H. // Acta Mater. 2002. № 50. P. 537–551. https://doi.org/10.1016/S1359-6454(01)00359-7
- Xu T., Wang X.D., Dufresne E.M. et al. // Mater. Today Phys. 2021. № 17. 100351. https://doi.org/10.1016/j.mtphys.2021.100351
- Mahjoub R., Laws K.J., Hamilton N.E. et al. // Comput. Mater. Sci. 2016. 125. P. 197–205. https://doi.org/10.1016/j.commatsci.2016.08.049
- Hu Y.C., Tanaka H. // Sci. Adv. 2020. 6. P. eabd2928 (1-12). https://doi.org/10.1126/sciadv.
Supplementary files


