DENSITY, ELECTRICAL RESISTIVITY AND MAGNETIC SUSCEPTIBILITY OF FeNiSiBNb ALLOY IN SOLID AND LIQUID STATES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Metallic alloys in amorphous (disordered) and nanocrystalline states which possess distinctive electrical, magnetic and mechanical properties compared with existing crystalline analogues are necessary for creation of modern transformer cores and elements of other magnetic and electrical devices. Formation of an amorphous state in metal alloys is one of the methods for obtaining new materials. The above properties characterizing of amorphous and nanocrystalline multicomponent alloys based on iron, nickel and cobalt with small addition of boron and silicon. At the same time obtaining the amorphous state in most cases is associated with quenching from the melt, thus, data on the physical properties of master alloys at high temperatures are important, but to date they are presented in the literature only fragmentarily. In this paper, structure (X-ray diffraction) and physical properties (density, electrical resistivity and magnetic susceptibility) of Fe39Ni39B19Si3Nb4 alloy were investigated in a wide temperature range, including liquid state. It was shown that at room temperature the alloy is a multiphase composition based on (at higher temperatures, a solid solution) Fe0.75Ni0.25 compound (up to 91.3%), as well as several binary compounds with boron and silicon: FeB, NbB2, Ni6Si2B, Ni3B. It was established that in liquid state the alloy is characterized by monotonic changes in properties, however near temperature 1425 K changes in slope of density and electrical resistivity temperature dependences take place. Temperature dependences of magnetic susceptibility in liquid state are smooth and can be described by the generalized Curie–Weiss law. Effective magnetic moment per alloy atom, paramagnetic Curie temperature and density of electron states at Fermi level were calculated from the experimental data. It has been established that there is a strong chemical interaction between the atoms in the melt.

Авторлар туралы

B. Rusanov

Ural State Pedagogical University

Email: rusanov@uspu.ru
Yekaterinburg, Russia

V. Sidorov

Ural State Pedagogical University; Udmurt Federal Research Center UB RAS

Email: rusanov@uspu.ru
Yekaterinburg, Russia; Izhevsk, Russia

P. Popel

Ural State Pedagogical University

Yekaterinburg, Russia

A. Sabirzyanov

Ural State University of Railway Transport

Yekaterinburg, Russia

S. Petrova

Yatolin Institute of Metallurgy UB RAS

Yekaterinburg, Russia

A. Rusanova

Yatolin Institute of Metallurgy UB RAS

Yekaterinburg, Russia

K. Shunyaev

Yatolin Institute of Metallurgy UB RAS

Yekaterinburg, Russia

P. Chugunov

Institute of High Temperature Electrochemistry UB RAS

Yekaterinburg, Russia

Әдебиет тізімі

  1. Widom M., Mihalkovic M. // Journal of Materials Research. 2005. 20. 237. https://doi.org/10.1557/JMR.2005.0028
  2. Nakamura T., Koshiba H., Imafuku M., Inoue A., Mastubara E. // Materials Transactions. 2002. 43. 1918. https://doi.org/10.2320/matertrans.43.1918
  3. Stoica M., Eckert J., Roth S., Yavari A.R., Schultz L. // Journal of Alloys and Compounds. 2007. 434–435. P. 171–175. https://doi.org/10.1016/j.jallcom.2006.08.188
  4. Hirata A., Hirotsu Y., Amiya K., Nishiyama N., Inoue A. // Physical Review B. 2009. 80. 140201 (R). https://doi.org/10.1103/PhysRevB.80.140201
  5. Русанов Б.А., Сидоров В.Е., Петрова С.А., Швец П. Ст., Яничкович Д. // Расплавы. 2021. 4. С. 432–440. https://doi.org/10.31857/S0235010621040083
  6. Михайлов В.А., Сидоров В.Е., Сабирзянов А.А. // Расплавы. 2019. № 1 С. 58–61. https://doi.org/10.1134/S0235010619010122
  7. Zhang H., Yan Z.C., Chen Q., Feng Y., Qi Z.G., Liu H.Z., Li X.Y., Wang W.M. // Journal of Non-Crystalline Solids. 2021. V. 564. 120830. https://doi.org/10.1016/j.jnoncrysol.2021.120830
  8. Milkova D.A., Bazlov A.I., Zanaeva E.N., Churyumov A.Yu., Strochko I.V., Ubyivovk E.V., Inoue A. // Journal of Non-Crystalline Solids. 2023. V. 609. 122234. https://doi.org/10.1016/j.jnoncrysol.2023.122234
  9. Su J., Yuan H., Mo K., Zhou L., Wang G., Zheng L. // Journal of Non-Crystalline Solids. 2024. V. 639. 123082. https://doi.org/10.1016/j.jnoncrysol.2024.123082
  10. Shuyan Zhang, Danyue Ma, Peipei Shen, Hua Chen, Zhibin Zhang // Journal of Non-Crystalline Solids. 2024. V. 645. 123203. https://doi.org/10.1016/j.jnoncrysol.2024.123203
  11. Sterkhova I.V., Kamaeva L.V., Lad’yanov V.I., Chtchelkatchev N.M. // Journal of Molecular Liquids. 2021. V. 323. 114636. https://doi.org/10.1016/j.molliq.2020.114636
  12. Sidorov V., Hosko J., Mikhailov V., Rozkov I., Uporova N., Svec P., Janickovic D., Matko I., Svec Sr P., Malyshev L. // Journal of Magnetism and Magnetic Materials. 2014. V. 354. P. 35–38. https://doi.org/10.1016/j.jmmm.2013.10.038
  13. DIFFRAC.Suite: Eva5.0 Bruker AXS 2010-2018 https://scholar.google.com/scholar?q=Bruker%20AXS%20%282019%29.%20In%20DIFFRAC.%20EVA%20V5.1.%20Bruker%20AXS%20GmbH%2C%20Karlsruhe%2C%20Germany
  14. Gates-Rector S., Blanton T. // Powder Diffraction. 2019. № 34 (4). P. 352–360. https://doi.org/10.1017/S0885715619000812
  15. Rietveld H.M. // Journal of Applied Crystallography. 1969. № 2. P. 65–71. https://doi.org/10.1107/S0021889869006558
  16. Coelho A.A. // Journal of Applied Crystallography. 2018. № 51. P. 210–218. https://doi.org/10.1107/S1600576718000183
  17. Rusanov B.A., Sidorov V.E. // Journal of Physics: Condensed Matter. 2023. V. 35. 294001. http://dx.doi.org/10.1088/1361-648X/accdaa
  18. Rusanov B.A., Sidorov V.E., Petrova S.A., Perevyshin V.A., Rusanova A.I., Sabirzyanov A.A., Shunyaev K.Y. // Journal of Alloys and Compounds. 2024. V. 1008. 176792. https://doi.org/10.1016/j.jallcom.2024.176792

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).