SELECTION OF CONDITIONS FOR PRODUCING ALLOYS BY ELECTROLYSIS OF CHLORIDE MELTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The production of alloys by molten salt electrolysis is an important scientific and technical challenge. Developing criteria for the rational selection of metal co-deposition conditions in an electrochemical cell with consumable anodes helps solve the problem of controlled alloy electrodeposition. In this work, an approach based on comparison of equilibrium potentials for two metal ion/metal pairs (An+/A and Bm+/B) is proposed to find the initial electrolysis parameters (concentration ratio and operating temperature). Theoretical analysis indicates the existence of regions of thermodynamic equilibrium for An+/A and Bm+/B pairs in the melt-solvent with a certain ratio of the An+ and Bm+ ion concentrations. Experimental and calculated values of equilibrium potentials for a wide range of metals in a melt based on an equimolar NaCl-KCl mixture containing 1 mol.% of depositing ions at 1000 K are compared. Venn-Euler diagrams are constructed for the pairs Ni2+/Ni, Mo3+/Mo, Cr2+/Cr, Pd2+/Pd, Rh3+/Rh, Ru3+/Ru and Ir3+/Ir in the temperature range from 948 to 1123 K and ion concentrations in the melt from 0.1 to 2 mol.%. The equilibrium regions in the Ni2+/Ni and Mo3+/Mo, Pd2+/Pd and Rh3+/Rh, Ru3+/Ru and Ir3+/Ir systems are calculated. It is shown that as the temperature decreases, the equilibrium regions expand for the studied pairs of noble metals, but narrow for nickel and molybdenum. The practical application of this method for a specific system requires taking into account additional data on the liquidus temperature and the vapor pressure of the melt to limit the equilibrium region on the left and right, respectively.

About the authors

A. V Isakov

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: isakov@ihte.ru
Ekaterinburg, Russia

A. P Apisarov

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

O. V Grishenkova

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: o.grishenkova@ihte.ru
Ekaterinburg, Russia

References

  1. Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука, 1976.
  2. Huang Y., Zhu L., Ye Y., Zhang H., Bai S. Iridium coatings with various grain structures prepared by electrodeposition from molten salts: Growth mechanism and high temperature oxidation resistance // Surf. Coat. Technol. 2017. 325. P. 190–199. https://doi.org/10.1016/j.surfcoat.2017.06.057
  3. Vinogradov-Zhabrov O.N., Minchenko L.M., Esina N.O., Pankratov A.A. Electrodeposition of rhenium from chloride melts – electrochemical nature, structure and applied aspects // J. Min. Met. B 2003. 39B. P. 149–166. https://doi.org/10.2298/JMMB0302149V
  4. Saltykova N.A. Electrodeposition of platinum metals and alloys from chloride melts // J. Min. Met. B 2003. 39B. P. 201–208. https://doi.org/10.2298/JMMB0302201S
  5. Молчанов А.М. Электроосаждение вольфрама из расплавленных солей. Екатеринбург: РИО УрО РАН, 2014.
  6. Kuznetsov S.A. Electrochemistry of refractory metals in molten salts: application for the creation of new and functional materials // Pure Appl. Chem. 2009. 81. P. 1423–1439. https://doi.org/10.1351/PAC-CON-08-08-09
  7. Isakov A.V., Chernyshev A.A., Apisarov A.P., Zaikov Y.P. Electrodeposition of alloys from halide melts in solid state // Electrochem. Mater. Technol. 2024. 3. № 2. P. 20243036. https://doi.org/10.15826/elmattech.2024.3.036
  8. Saltykova N.A., Portnyagin O.V. Electrodeposition of Ir–Ru Alloys from Chloride Melts: Steady-State Potentials and Cathodic Processes // Russ. J. Electrochem. 2000. 36. P. 784–788. https://doi.org/10.1007/BF02757681
  9. Saltykova N.A., Portnyagin O.V. Electrodeposition of Iridium–Ruthenium Alloys from Chloride Melts: The Structure of the Deposits // Russ. J. Electrochem. 2001. 37. P. 924–930. https://doi.org/10.1023/A:1011944226271
  10. Etenko A., McKechnie T., Shchetkovskiy A., Smirnov A. Oxidation-Protective Iridium and Iridium-Rhodium Coating Produced by Electrodeposition from Molten Salts // ECS Trans. 2007. 3. P. 151–157. https://doi.org/10.1149/1.2721466
  11. Gu Y., Liu J., Qu S., Deng Y., Han X., Hu W., Zhong C. Electrodeposition of alloys and compounds from high-temperature molten salts // J. Alloys Compd. 2017. 690. P. 228–238. https://doi.org/10.1016/j.jallcom.2016.08.104
  12. De Silva U., Coons T.P. Molten Salt Electrodeposition: Review // Energies 2024. 17. P. 3832. https://doi.org/10.3390/en17153832
  13. Исаев В.А. Электрохимическое фазообразование. Екатеринбург: УрО РАН, 2007.
  14. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.
  15. Морачевский А.Г., Поляков Е.Г., Стангрит П.Т. Академик Алексей Николаевич Барабошкин (1925–1995) // ЖПХ. 2000. 73. № 10. С. 1737–1738.
  16. Хохлов В.А., Кудяков В.Я., Исаев В.А. Памяти академика А.Н. Барабошкина (12.11.1925–27.06.1995 гг.) // Электрохимия 2000. 36. № 11. С. 1423–1424.
  17. Гришенкова О.В., Семерикова О.Л. Электрокристаллизация в расплавленных солях: к 100-летию со дня рождения академика Алексея Николаевича Барабошкина // Расплавы. 2025. № 6. С. 557—568.
  18. Toenshoff D., Lanam R., Ragaini J., Shchetkovskiy A., Smirnov A. Iridium coated rhenium rocket chambers produced by electroforming. In: Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Las Vegas: AIAA, 2000. P. AIAA 2000-3166. https://doi.org/10.2514/6.2000-3166
  19. Zaluki M., Hasanof T., Shchetkovskiy A., McKechnie T., Cavender D., Burnside C., Dankanich J. Green Monopropellant 100mN Thruster. In: AIAA Propulsion and Energy 2021 Forum (virtual event), 2021. https://doi.org/10.2514/6.2021-3591
  20. Исаков А.В., Аписаров А.П., Никитина А.О. Электролитическое получение и отжиг материала Ir – Re – Ir // Цветные металлы. 2017. № 11. С. 55–60. https://doi.org/10.17580/tsm.2017.11.10
  21. Wu W., Chen Z. Iridium Coating: Processes, Properties and Application. Part I. Processes for protection in high-temperature environments against oxidation and corrosion // Johnson Matthey Technol. Rev. 2017. 61. P. 16–28. https://doi.org/10.1595/205651317X693606
  22. Isakov A.V., Grishenkova O.V., Zaikov Y.P. Electrodeposition of Iridium and Rhenium Layers from Molten Salts and Behavior of Ir/Re-based Coatings under High-Temperature Oxidation Conditions // J. Electrochem. Soc. 2025. 172. P. 082502. https://doi.org/10.1149/1945-7111/adf775
  23. Lee Y.-J., Lee T.-H., Nersisyan H.H., Lee K.-H., Jeong S.-U., Kang K.-S., Bae K.-K., Park K.-T., Lee J.-H. Characterization of Ta-W Alloy Films Deposited by Molten Salt Multi-Anode Reactive Alloy Coating (MARC) Method // Int. J. Refract. Metals Hard Mater. 2015. 53. P. 23–31. https://doi.org/10.1016/j.ijrmhm.2015.04.022
  24. Lee Y.-J., Park D.-J., Kang K.-S., Bae G.-G., Han M.-H., Lee J.-H. Molten Salt Multi-Anode Reactive Alloy Coating (Marc) of Ta-W Alloy on Sus316l. In: Proc. 8th Pacific Rim International Congress on Advanced Materials and Processing. Cham: Springer, 2013. P. 1975–1981. https://doi.org/10.1007/978-3-319-48764-9_245
  25. Polyakova L.P., Taxil P., Polyakov E.G. Electrochemical Behaviour and Codeposition of Titanium and Niobium in Chloride–Fluoride Melts // J. Alloys Compd. 2003. 359. P. 244–255. https://doi.org/10.1016/S09258388(03)00180-4
  26. Zhang S., Hu K., Zhao X., Liang J., Li Y. Study on Diffusion Kinetics of Chromium and Nickel Electrochemical Co-Deposition in a NaCl–KCl–NaF–Cr2O3–NiO Molten Salt // High Temperature Mater. Processes 2023. 42. P. 20220276. https://doi.org/10.1515/htmp-2022-0276
  27. Ahmad I., Spiak W.A., Janz G.J. Electrodeposition of Tantalum and Tantalum-Chromium Alloys // J. Appl. Electrochem. 1981. 11. P. 291–297. https://doi.org/10.1007/BF00613946
  28. Gussone J., Vijay C.R.Y., Watermeyer P., Milicevic K., Friedrich B., Haubrich J. Electrodeposition of Titanium–Vanadium Alloys from Chloride-Based Molten Salts: Influence of Electrolyte Chemistry and Deposition Potential on Composition, Morphology and Microstructure // J. Appl. Electrochem. 2020. 50. P. 355–366. https://doi.org/10.1007/s10800-019-01385-0
  29. Ueda M., Hayashi H., Ohtsuka T. Electrodeposition of Al–Pt Alloys Using Constant Potential Electrolysis in AlCl3–NaCl–KCl Molten Salt Containing PtCl2 // Surf. Coat. Technol. 2011. 205 P. 4401–4403. https://doi.org/10.1016/j.surfcoat.2011.03.051
  30. Sato K., Matsushima H., Ueda M. Electrodeposition of Al-Ta Alloys in NaCl-KCl-AlCl3 Molten Salt Containing TaCl5 // Appl. Surf. Sci. 2016. 388. P. 794–798. https://doi.org/10.1016/j.apsusc.2016.03.001
  31. Ueda M., Kigawa H., Ohtsuka T., Co-Deposition of Al–Cr–Ni Alloys Using Constant Potential and Potential Pulse Techniques in AlCl3–NaCl–KCl Molten Salt // Electrochim. Acta 2007. 52. P. 2515–2519. https://doi.org/10.1016/j.electacta.2006.09.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).