Topography of ganglion cells in the mammal’s retina: ecological and evolutionary aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Visual fields of mammals are characterized by a non-uniform visual acuity. They contain the best-vision zones of high resolution, whereas visual acuity is markedly lower in other parts of the visual field. To a large extent, the visual acuity depends on the concentration (a number per unit of area) of the retinal ganglion cells: the cell concentration is maximal in the best-vision zones. The best-vision zone

About the authors

A. M. Mass

Institute of Ecology and Evolution A.N. Severtsov of the Russian Academy of Sciences

Email: alla-mass@mail.ru
PhD in Biology, senior researcher 119071, Moscow, Leninsky Prospect, 33

A. Ya. Supin

Institute of Ecology and Evolution A.N. Severtsov of the Russian Academy of Sciences

Email: alex_supin@mail.ru
ORCID iD: 0000-0002-3609-2766
D.Sci in Biology, professor, chief researcher 119071, Moscow, Leninsky Prospect, 33

References

  1. Mass A.M., Supin A.Yа. Opticheskie kharakteristiki i retinal’naya topografiya glaza nutrii (Myocastor coypus) [Optical characteristics and retinal topography of the eye of the nutria (Myocastor coypus).]. Sensornye sistemy. 2018. V. 32. P. 124–126. (In Russ.) https://doi.org/10.7868/S0235009218020026
  2. Calderone J.B., Reese B.E., Jacobs. H. Topography of photoreceptors and retinal ganglion cells in the spotted Hyena (Crocuta crocuta). Brain, Behav. Evol. 2003. V. 62. P. 182–192. https://doi.org/10.1159/000073270
  3. Coimbra J.P., Hart N.S., Collin S.P., Manger P.R. Scene from above: Retinal ganglion cell topography and spatial resolving power in giraffe (Giraffa camelopardalis). J. comp. Neurol. 2013. V. 521. P. 2042–2057. https://doi.org/10.1002/cne.23271
  4. Coimbra J.P, Bertelsen M.F., Manger P.R. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibious). J. comp. Neurol. 2017. V. 525. P. 2499–2513. https://doi.org/10.1002/cne.24179
  5. Coimbra J.P., Manger P.R. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Cedratotherium simum). J. comp. Neurol. 2017. V. 525(11). P. 2484–2498. https://doi.org/10.1002/cne.24136
  6. Coimbra J.P., Pettigrew J.D., Kaswera-Kyamakya C., Gilissen E., Collin S.P., Manger P.R. Retinal ganglion cell topography and spatial resolving power in African megachiropterans: Influence of roosting microhabitat and foraging. J. comp. Neurol. 2017. V. 525 P. 186–203. https://doi.org/10.1002/cne.24055
  7. Collin S.P. Behavioral ecology and retinal cell topography. S.N. Archer, M.B.A. Djamgoz, E.R. Loew, J.V.C. Partridge, S. Vallerga (Eds.) Adaptive mechanisms in the ecology of vision. 1999. Springer. P. 509–535.
  8. Curcio C.A., Allen K.A. Topography of Ganglion Cells in Human Retina. J. Comp. Neurol. 1990. V. 300. P. 5–25. https://doi.org/10.1002/cne.903000103
  9. Dawson W.W., Hawthorne, M. N. Jenkins, R. L, Goldston R.T. Giant neural system in the inner retina and optic nerve of small whales. J. comp. Neurol. 1982. V. 205 (1). P. 1–7. https://doi.org/10.1002/cne.902050102.
  10. Dral A.D.G. The retinal ganglion cells of Delphinus delphis and their distribution The retinal ganglion cells of Delphinus delphis and their distribution. Aquat. Mammals. 1983. V. 10. P. 57–68. https://doi.org/10.1002/cne.902050102
  11. Dunlop S.A., Longley W.A., Beazley L.D. Development of the area centralis and visual streak in the grey kangaroo Macropus fuliginous. Vision Res. 1987. V. 27. P. 151–164. https://doi.org/10.1016/0042-6989(87)90178-7
  12. Guo X., Sugita S. Topography of ganglion cells in the retina of the horse. J. Vet. Med. 2000. V. 62. P. 1145–1150. https://doi.org/10.1292/jvms.62.1145
  13. Harman A., Dann J., Ahmat A., Macuda T., Johnson K., Timney B. The retinal ganglion cell layer and visual acuity of the camel. Brain, Behav. Evol. 2001. V. 58. P. 15–27. https://doi.org/10.1159/000047258.
  14. Hughes A. Topography of vision in mammals of contrasting ganglion cell topography. J. Comp. Neurol. 1975. V. 163. P. 107–128.
  15. Hughes A. The topography of vision in mammals of contrasting life styles: comparative optics and retinal organization. F. Crescitelli (Ed). Handbook of Sensory Physiology: The Visual system in Vertebrates. 1977. V. VII/5. Berlin: Springer. P. 613–756.
  16. Lisney T. J., Collin S.P. Retinal topography in two species of baleen whale (Cetacea: Mysticeti). Brain, Behav. Evol. 2018. V. 92 (3–4). P. 97–116. https://doi.org/10.1159/000495285
  17. Mass A.M. Retinal topography in the walrus Retinal topography in the walrus (Odobenus rosmarus divergens) and fur seal (Callorhinus ursinus). J.A. Thomas, R.A. Kastelein, A.Ya. Supin (Eds). Marine Mammal Sensory Systems. New York: Plenum, 1992. P. 119–135.
  18. Mass A.M., Supin A.Ya. Topographic distribution of sizes and density of ganglion cells in the retina of a porpoise, Phocoena Phocoena. Aquat. Mammals. 1986. V. 12. P. 95–102.
  19. Mass A.M., Supin A.Ya. Ganglion cells topography of the retina in the bottlenosed dolphin, Tursiops truncate. Brain, Behav. Evol. 1995. V. 45. P. 257–265. https://doi.org/10.1159/000113554
  20. Mass A.M., Supin A.Ya. Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the gray whale, Eschrichtius gibbosus. Aquat. Mammals. 1997. V. 23. P. 17–28.
  21. Mass A.M., Supin A.Ya. Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris. Brain, Beahv. Evol. 2000. V. 55. P. 111–119. https://doi.org/10.1159/000006646
  22. Mass A.M., Supin A.Ya. Visual field organization and retinal resolution of the beluga, Delphinapterus leucas (Pallas). Aquat. Mammals. 2002. V. 28. P. 241–250. https://doi.org/10.1023/a:1013326521559.
  23. Mass A.M., Supin A.Ya. Estimates of underwater and aerial visual acuity in the European beaver Castor fiber L. based on morphological data. Dokl. Biol. Sci. 2017. V. 473. P. 35–38. https://doi.org/10.1134/S0012496617020065.
  24. Murayama T., Somiya H. Distribution of ganglion cells and object localizing ability in the retina of three cetaceans. Fish. Sci. 1998. V. 64. P. 27–30. https://doi.org/10.2331/fishsci.64.27
  25. Murayama T., Somiya H., Aoki I., Ishii T. The distribution of ganglion cells in the retina and visual acuity of minke whale. Nippon Suissan Gakkaishi. 1992. V. 58. P. 1057–1061.
  26. Murayama T., Somiya H., Aoki I., Ishii T. Retinal ganglion cell size and predict visual capabilities of Dall’s porpoise. Mar. Mammal Sci. 1995. V. 11. P. 136–149. https://doi.org/10.1111/j.1748-7692.1995.tb00513.x
  27. Peichl L. Topography of ganglion cells in the dog and wolf retina. J. Comp. Neurol. 1992. V. 324. P. 603–620. https://doi.org/10.1002/cne.903240412
  28. Pettigrew J.D., Manger P.R. Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): Calculating visual resolution. Visual Neurosci. 2008. V. 25. P. 215–220. https://doi.org/10.1017/S0952523808080498
  29. Rapaport D.H., Stone J. The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience. 1984. V. 11. P. 289–301. https://doi.org/10.1016/0306-4522(84)90024-1
  30. Rodieck R.W. The density recovery profile: A method of the analysis of points in the plain applicable to retinal studies. Visual Neurosci. 1991. V. 6. P. 95–111. https://doi.org/10.1017/s095252380001049x
  31. Shinozaki A., Hosaka Y., Imagawa T., Uehara M. Topography of ganglion cells and photoreceptors in the sheep retina. J. Comp. Neurol. 2010. V. 518. P. 2305–2315. https://doi.org/10.1002/cne.22333
  32. Stone J. The number and distribution of ganglion cells in the cat’s retina. J. Comp. Neurol. 1978. V. 180. P. 753–770.
  33. Stone J., Keens J. Distribution of small and medium-sized ganglion cells in the cat’s retina. J. Comp. Neurol. 1980. V. 192. P. 235–246. https://doi.org/10.1002/cne.901920205
  34. Stone J., Halasz P. Topography of the retina in the elephant Loxodonta Africana. Brain, Behav. Evol. 1989. V. 34. P. 84–95. https://doi.org/10.1159/000116494
  35. Tancred E. The distribution sizes of ganglion cells in the retinas of five Australian marsupials. J. Comp. Neurol. 1981. V. 196. P. 585–603. https://doi.org/10.1002/cne.901960406
  36. Wang H.-H., Gallagher S.K., Byers S., Madl J.E. Gionfriddo J.R. Retinal ganglion cell distribution and visual acuity in alpacas (Vicugna pacos). Veter. Ophthalmol. 2015. V. 18. P. 35–42. https://doi.org/10.1111/vop.12131
  37. Wässle A., Peichl L., Boycott B.B. Topography of horizontal cells in the retina of the domestic cat. Proc. R. Soc. Lond. B. 1978. V. 203. P. 269–291. https://doi.org/10.1098/rspb.1978.0105
  38. Wässle A., Riemann H.L. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B. 1978. V. 200. P. 441–461. https://doi.org/10.1098/rspb.1978.0026

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).