Магнитная навигация животных, контрастная чувствительность зрения и закон Вебера–Фехнера

Обложка

Цитировать

Полный текст

Аннотация

Известно, что некоторые животные могут реагировать на очень малые изменения магнитного поля (в тысячу раз меньше геомагнитного поля) и используют это для навигации по магнитному рельефу Земли. Природа молекулярного сенсора магнитного поля остается, однако, неопределенной, хотя установлено, что магнитное чувство связано со зрением. Полагают, что магнетохимическая реакция лежит в основе функционирования магнитного сенсора. Криптохромы фоторецепторов, выстилающих сетчатку глаза, содержат фотоиндуцированные спин-коррелированные пары радикалов, участвующие в формировании нервного импульса и чувствительные к магнитному полю. Поэтому животное могло бы ощущать магнитное поле как изменение яркости больших полей зрения и ориентироваться по их контрасту. Однако чувствительность отдельных сенсоров – радикальных пар – очень низка. Ранее предполагали, что это затруднение преодолевается статистическим усилением контрастной чувствительности за счет параллельной обработки мозгом первичных сигналов миллионов фоторецепторов. В настоящей работе эта гипотеза проверена. Найдено, что пороговое ощущение яркостного контраста почти линейно зависит от логарифма углового размера контрастирующего стимула, что является характерным для физиологии ощущений, подчиняющихся закону Вебера–Фехнера. Контрастная чувствительность увеличивается с ростом числа фоторецепторов, участвующих в распознавании стимула, однако, количественно этого увеличения недостаточно для надежного объяснения магнитной навигации животных.

Об авторах

В. Н. Бинги

Федеральный исследовательский центр Институт общей физики им. А.М. Прохорова РАН

Автор, ответственный за переписку.
Email: vnbin@mail.ru
Россия, 119991, Москва, ул. Вавилова, 38

Список литературы

  1. Астахова Л.А., Ротов А.Ю., Кавокин К.В., Чернецов Н.С., Фирсов М.Л. Связь магнитного компаса и фоторецепции у птиц: гипотезы и нерешенные вопросы. Журнал общей биологии. 2019. Т. 80. № 2. С. 83–94. https://doi.org/10.1134/S0044459619020040
  2. Муравьева С.В., Пронин С.В., Шелепин Ю.Е. Контрастная чувствительность зрительной системы человека. Экспериментальная психология. 2010. Т. 3. № 3. С. 5–20.
  3. Домбругов Р.М. Телевидение. Киев. Вища Школа. 1979.
  4. Красильников Н.Н., Шелепин Ю.Е. Функциональная модель зрения. Оптический журнал. 1997. Т. 64. № 2. С. 72–82.
  5. Кучерявый А.А. Бортовые информационные системы. Ульяновск. УлГТУ. 2004.
  6. Bertalmio M. Vision мodels for high dynamic range and wide colour gamut imaging. London: Acad. Press, 2020.
  7. Binhi V.N., Prato F.S. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE. 2017. V. 12. № 6. P. e0179340. https://doi.org/10.1371/journal.pone.0179340
  8. Binhi V.N., Prato F.S. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Scientific Reports. 2018. V. 8. № 1. P. 13495. https://doi.org/10.1038/s41598-018-31847-y
  9. Blackwell H.R. Contrast thresholds of the human eye. J. Opt. Soc. America. 1946. V. 36. № 11. P. 624–643.
  10. Buchachenko A. Magneto-biology and medicine. New York. Nova Science. 2014.
  11. Crumey A. Human contrast threshold and astronomical visibility. Monthly Notices of the Royal Astronomical Society. 2014. V. 442. № 3. P. 2600–2619. https://doi.org/10.1093/mnras/stu992
  12. Curcio C.A., Sloan K.R., Kalina R.E., Hendrickson A.E. Human photoreceptor topography. The Journal of Comparative Neurology. 1990. V. 292. № 4. P. 497–523.
  13. Hore P.J., Mouritsen H. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics. 2016. V. 45. № 1. P. 299–344. https://doi.org/10.1146/annurev-biophys-032116-094545
  14. Lohmann K.J., Lohmann C.M., Ehrhart L.M., Bagley D.A., Swing T. Animal behaviour: geomagnetic map used in sea-turtle navigation. Nature. 2004. V. 428. № 6986. P. 909–910. https://doi.org/10.1038/428909a
  15. Nadler M.P., Miller D., Nadler D.J. (Eds). Glare and contrast sensitivity for clinicians. New York: Springer-Verlag, 1990.
  16. Pelli D.G., Bex P. Measuring contrast sensitivity. Vision Research. 2013. V. 90. P. 10–14. https://doi.org/10.1016/j.visres.2013.04.015
  17. Pishchalnikov R.Y., Gurfinkel Y.I., Sarimov R.M., Vasin A.L., Sasonko M.L., Matveeva T.A., Binhi V.N., Baranov M.V. Cardiovascular response as a marker of environmental stress caused by variations in geomagnetic field and local weather. Biomedical Signal Processing and Control. 2019. V. 51. P. 401–410. https://doi.org/10.1016/j.bspc.2019.03.005
  18. Riccó, A. Relazione fra il minimo angolo visuale e l’intensitГ luminosa. Memorie della Societa Degli Spettroscopisti Italiani. 1877. V. 6. P. B29–B58.
  19. Schulten K., Swenberg C., Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift fur Physikalische Chemie. 1978. V. 111. № 1. P. 1–5.
  20. Stöckl A.L., O’Carroll D.C., Warrant E.J. Neural summation in the hawkmoth visual system extends the limits of vision in dim light. Current Biology. 2016. V. 26. № 6. P. 821–826. https://doi.org/10.1016/j.cub.2016.01.030
  21. Wan G., Hayden A.N., Iiams S.E., Merlin C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nature Communications. 2021. V. 12. № 1. P. 771. https://doi.org/10.1038/s41467-021-21002-z
  22. Watson A.B., Ahumada A.J. A standard model for foveal detection of spatial contrast. Journal of Vision. 2005. V. 5. № 9. P. 717–740. https://doi.org/10.1167/5.9.6
  23. Weisstein E.W. Beta Binomial Distribution. From MathWorld – A Wolfram Web Resource. URL: https://mathworld.wolfram.com/BetaBinomialDistribution.html (accessed 2022.07.18).

Дополнительные файлы


© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».