ДИНАМИКА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ИНТЕРМЕДИАТОВ КРИГЕ СН2ОО, СН3СНОО И (СН3)2СОО

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Карбонилоксиды, или интермедиаты Криге, являются химически активными соединениями, которые легко вступают в реакции с другими компонентами атмосферы, способствуя образованию ОН- и СН3-радикалов, оксидов азота, альдегидов, перекиси водорода и различных кислот. В настоящей работе рассмотрены физико-химические процессы с участием электронно-возбужденных состояний молекул трех простых интермедиатов Криге: СН2ОО, СН3СНОО и (СН3)2СОО. Кроме основного состояния S0, в схему расчета включены четыре нижних электронно-возбужденных состояния этих соединений: S1 (nπ*), S2 (ππ*), S3 (nπ*) и S4 (ππ*). Установлено, что оптические переходы S0→S2 и S0→S4 имеют сравнительно большие дипольные моменты, поэтому именно они наблюдаются в спектрах поглощения данных соединений и играют ключевую роль в атмосферных процессах. Анализ структуры ППЭ, отвечающих указанным электронно-возбужденным состояниям, их взаимного расположения, величин локальных минимумов и максимумов, а также точек их пересечений показал, что при фотовозбуждении в типичных атмосферных условиях наиболее вероятной химической реакцией является прямой разрыв О—О-связи в S2 (ππ*) или S4 (ππ*) состояниях, приводящий к отрыву атома кислорода O(1D). При более сложных условиях, когда молекула имеет достаточное количество внутренней энергии, возможны переходы на нижележащие электронные уровни, равновесные геометрии которых сильно отличаются от исходных. Это приводит к выделению большого количества энергии и последующей релаксации молекулы в основное электронное состояние S0.

Об авторах

Ю. А. Дьяков

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yuri_dyakov@mail.ru
Москва, Россия

Н. И. Бутковская

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Москва, Россия

Е. С. Васильев

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Москва, Россия

И. Д. Родионов

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Москва, Россия

П. С. Хомякова

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Москва, Россия

М. Г. Голубков

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Москва, Россия

Список литературы

  1. Criegee R., Wenner G. // Justus Liebigs Ann. Chem. 1949. V. 564. № 1. P. 9. https://doi.org/10.1002/jlac.19495640103
  2. Khan M.A.H., Percival C.J., Caravan R.L. et al. // Environ. Sci. Process. Impacts. 2018. V. 20. № 3. P. 437. https://doi.org/10.1039/C7EM00585G
  3. Taatjes C.A., Shallcross D.E., Percival C.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1704. https://doi.org/10.1039/c3cp52842a
  4. Kanakidou M., Seinfeld J.H., Pandis S.N. et al. // Atmos. Chem. Phys. 2005. V. 5. № 4. P. 1053. https://doi.org/10.5194/acp-5-1053-2005
  5. Kumar M., Francisco J.S. // J. Phys. Chem. Lett. 2017. V. 8. № 17. P. 4206. https://doi.org/10.1021/acs.jpclett.7b01762
  6. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22. https://doi.org/10.31857/S0207401X21100034
  7. Dyakov Y.A., Adamson S.O., Golubkov G.V. et al. // Atoms. 2023. V. 11. № 12. 157. https://doi.org/10.3390/atoms11120157
  8. Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
  9. Herron J.T., Martinez R.I., Huie R.E. // Int. J. Chem. Kinet. 1982. V. 14. № 3. P. 225. https://doi.org/10.1002/kin.550140303
  10. Lelieveld J., Dentener F.J., Peters W. et al. // Atmos. Chem. Phys. 2004. V. 4. № 9/10. P. 2337. https://doi.org/10.5194/acp-4-2337-2004
  11. Taatjes C.A., Welz O., Eskola A.J. et al. // Science. 2013. V. 340. № 6129. P. 177. https://doi.org/10.1126/science.1234689
  12. Chao W., Hsieh J.T., Chang C.H. et al. // Science. 2015. V. 347. № 6223. P. 751. https://doi.org/10.1126/science.1261549
  13. Long B., Bao J.L., Truhlar D.G. // J. Am. Chem. Soc. 2016. V. 138. № 43. P. 14409. https://doi.org/10.1021/jacs.6b08655
  14. Smith M.C., Chang C.H., Chao W. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 14. P. 2708. https://doi.org/10.1021/acs.jpclett.5b01109
  15. Lin L.C., Chang H.T., Chang C.H. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 6. P. 4557. https://doi.org/10.1039/C5CP06446E
  16. Levy H. // Science. 1971. V. 173. № 3992. P. 141. https://doi.org/10.1126/science.173.3992.141
  17. Kidwell N.M., Li H., Wang X. et al. // Nat. Chem. 2016. V. 8. № 5. P. 509. https://doi.org/10.1038/nchem.2488
  18. Wang X.H., Bowman J.M. // J. Phys. Chem. Lett. 2016. V. 7. № 17. P. 3359. https://doi.org/10.1021/acs.jpclett.6b01392
  19. Fang Y., Liu F., Barber V.P. et al. // J. Chem. Phys. 2016. V. 144. № 6. 061102. https://doi.org/10.1063/1.4941768
  20. Foreman E.S., Kapnas K.M., Murray C. // Angew. Chemie Int. Ed. 2016. V. 55. № 35. P. 10419. https://doi.org/10.1002/anie.201604662
  21. Chhantyal-Pun R., McGillen M.R., Beames J.M. et al. // Angew. Chemie Int. Ed. 2017. V. 56. № 31. P. 9044. https://doi.org/10.1002/anie.201703700
  22. Behera B., Takahashi K., Lee Y.P. // Phys. Chem. Chem. Phys. 2022. V. 24. № 31. P. 18568. https://doi.org/10.1039/D2CP01053D
  23. Hallquist M., Wenger J.C., Baltensperger U. et al. // Atmos. Chem. Phys. 2009. V. 9. № 14. P. 5155. https://doi.org/10.5194/acp-9-5155-2009
  24. Taatjes C.A., Khan M.A.H., Eskola A.J. et al. // Environ. Sci. Technol. 2019. V. 53. № 3. P. 1245. https://doi.org/10.1021/acs.est.8b05073
  25. Vereecken L., Harder H., Novelli A. // Phys. Chem. Chem. Phys. 2012. V. 14. № 42. P. 14682. https://doi.org/10.1039/c2cp42300f
  26. Mauldin III R.L., Berndt T., Sipilä M. et al. // Nature. 2012. V. 488. № 7410. P. 193. https://doi.org/10.1038/nature11278
  27. Huang H.L., Chao W., Lin J.J.M. // Proc. Natl. Acad. Sci. 2015. V. 112. № 35. P. 10857. https://doi.org/10.1073/pnas.1513149112
  28. Kesselmeier J., Staudt M. // J. Atmos. Chem. 1999. V. 33. P. 23. https://doi.org/10.1023/A:1006127516791
  29. Sindelarova K., Granier C., Bouarar I. et al. // Atmos. Chem. Phys. 2014. V. 14. № 17. P. 9317. https://doi.org/10.5194/acp-14-9317-2014
  30. Gérard V., Galopin C., Ay E. et al. // Food Chem. 2021. V. 359. 129949. https://doi.org/10.1016/j.foodchem.2021.129949
  31. Wang P.K. // J. Geophys. Res. Atmos. 2003. V. 108. № D6. P. 1. https://doi.org/10.1029/2002JD002581
  32. Wang P.K. // Geophys. Res. Lett. 2004. V. 31. № 18. L18106. https://doi.org/10.1029/2004GL020787
  33. Wang P.K. // Atmos. Res. 2007. V. 83. № 2–4. P. 254. https://doi.org/10.1016/j.atmosres.2005.08.010
  34. Wang P.K. Physics and Dynamics of Clouds and Precipitation. New York: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9780511794285
  35. Nair P.R., Kavitha M. // Int. J. Remote Sens. 2020. V. 41. № 21. P. 8380. https://doi.org/10.1080/01431161.2020.1779376
  36. Shinbori A., Otsuka Y., Sori T. et al. // Earth, Planets Sp. 2022. V. 74. № 1. 106. https://doi.org/10.1186/s40623-022-01665-8
  37. Choi W., Kim S., Grant W.B. et al. // J. Geophys. Res. Atmos. 2002. V. 107. № D24. 8209. https://doi.org/10.1029/2001JD000644
  38. Дьяков Ю.А., Курдяева Ю.А., Борчевкина О.П. и др. // Хим. физика. 2020. Т. 39. № 4. C. 56. https://doi.org/10.31857/S0207401X20040068
  39. Borchevkina O.P., Adamson S.O., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 9. 1116. https://doi.org/10.3390/atmos12091116
  40. Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 11. 1384. https://doi.org/10.3390/atmos12111384
  41. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 53. https://doi.org/10.31857/S0207401X22050053
  42. Mohammad S., Wang P.K., Chou Y.L. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 549. https://doi.org/10.1134/S1990793122030198
  43. Кшевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Хим. физика. 2023. Т. 42. № 10. С. 77. https://doi.org/10.31857/S0207401X23100096
  44. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2023. Т. 42. № 4. С. 73. https://doi.org/10.31857/S0207401X23040039
  45. Курдяева Ю.А., Бессараб Ф.С., Борчевкина О.П. и др. // Хим. физика. 2024. Т. 43. № 6. С. 91. https://doi.org/10.31857/S0207401X24060105
  46. Chou Y., Wang P.K // J. Geophys. Res. Atmos. 2024. V. 129. № 23. e2024JD041725. https://doi.org/10.1029/2024JD041725
  47. Borchevkina O.P., Timchenko A.V., Bessarab F.S. et al. // Atmosphere. 2025. V. 16. № 6. 690. https://doi.org/10.3390/atmos16060690
  48. Hsu H.C., Tsai M.T., Dyakov Y.A. et al. // Int. Rev. Phys. Chem. 2012. V. 31. № 2. P. 201. https://doi.org/10.1080/0144235X.2012.673282
  49. Larsson M., Orel A.E. Dissociative recombination of molecular ions. New York: Cambridge University Press, 2008.
  50. Li Y., Gong Q., Yue L. et al. // J. Phys. Chem. Lett. 2018. V. 9. № 5. P. 978. https://doi.org/10.1021/acs.jpclett.8b00023
  51. Wang Z., Dyakov Y.A., Bu Y. // J. Phys. Chem. A. 2019. V. 123. № 5. P. 1085. https://doi.org/10.1021/acs.jpca.8b11908
  52. Zhou X.H., Liu Y.Q., Dong W.R. et al. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 4817. https://doi.org/10.1021/acs.jpclett.9b01740
  53. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 5. С. 68. https://doi.org/10.31857/S0207401X21050046
  54. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85. https://doi.org/10.31857/S0207401X22060036
  55. Dyakov Y.A., Stepanov I.G., Adamson S.O. et al. // ACS Earth Sp. Chem. 2025. V. 9. № 3. P. 671. https://doi.org/10.1021/acsearthspacechem.4c00365
  56. Welz O., Eskola A.J., Sheps L. et al. // Angew. Chemie Int. Ed. 2014. V. 53. № 18. P. 4547. https://doi.org/10.1002/anie.201400964
  57. Nguyen T.L., McCaslin L., McCarthy M.C. et al. // J. Chem. Phys. 2016. V. 145. № 13. 131102. https://doi.org/10.1063/1.4964393
  58. Sheps L. // J. Phys. Chem. Lett. 2013. V. 4. № 24. P. 4201. https://doi.org/10.1021/jz402191w
  59. Wang Y.Y., Chung C.Y., Lee Y.P. // J. Chem. Phys. 2016. V. 145. № 15. 154303. https://doi.org/10.1063/1.4964658
  60. Sheps L., Scully A.M., Au K. // Phys. Chem. Chem. Phys. 2014. V. 16. № 48. P. 26701. https://doi.org/10.1039/C4CP04408H
  61. Beames J.M., Liu F., Lu L. et al. // J. Chem. Phys. 2013. V. 138. № 24. 244307. https://doi.org/10.1063/1.4810865
  62. Lee Y.P. // J. Chem. Phys. 2015. V. 143. № 2. 020901. https://doi.org/10.1063/1.4923165
  63. Ting A.W.L., Lin J.J.M. // J. Chinese Chem. Soc. 2017. V. 64. № 4. P. 360. https://doi.org/10.1002/jccs.201700049
  64. Ting W.L., Chen Y.H., Chao W. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 22. P. 10438. https://doi.org/10.1039/C4CP00877D
  65. Liu F., Beames J.M., Green A.M. et al. // J. Phys. Chem. A. 2014. V. 118. № 12. P. 2298. https://doi.org/10.1021/jp412726z
  66. Werner H.J., Knowles P.J. // J. Chem. Phys. 1985. V. 82. № 11. P. 5053. https://doi.org/10.1063/1.448627
  67. Knowles P.J., Werner H.J. // Chem. Phys. Lett. 1985. V. 115. № 3. P.  259. https://doi.org/10.1016/0009-2614(85)80025-7
  68. Werner H.J., Knowles P.J., Knizia G. et al. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 2. P. 242. https://doi.org/10.1002/wcms.82
  69. Werner H.J., Knowles P.J., Manby F.R. et al. // J. Chem. Phys. 2020. V. 152. № 14. 144107. https://doi.org/10.1063/5.0005081
  70. Marchetti B., Esposito V.J., Bush R.E. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 532. https://doi.org/10.1039/D1CP02601A
  71. Kalinowski J., Foreman E.S., Kapnas K.M. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 16. P. 10941. https://doi.org/10.1039/C6CP00807K
  72. Esposito V.J., Werba O., Bush S.A. et al. // Photochem. Photobiol. 2022. V. 98. № 4. P. 763. https://doi.org/10.1111/php.13560
  73. Mai S., Avagliano D., Heindl M. et al. SHARC3.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics. 2023. https://doi.org/10.5281/zenodo.7828641
  74. Mai S., Marquetand P., González L. // WIREs Comput. Mol. Sci. 2018. V. 8. № 6. P. 1. https://doi.org/10.1002/wcms.1370
  75. Dyakov Y.A., Ho Y.C., Hsu W.H. et al. // Chem. Phys. 2018. V. 515. P. 543. https://doi.org/10.1016/j.chemphys.2018.09.019
  76. Dyakov Y.A., Toliautas S., Trakhtenberg L.I. et al. // Chem. Phys. 2018. V. 515. P. 672. https://doi.org/10.1016/j.chemphys.2018.07.020

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).