QUANTUM CHEMICAL SIMULATION OF REACTIONS IN A NANOGOLD–HYDROGEN–CARBON-OXIDE–OXYGEN SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy budget is calculated for the elementary steps involved in the reaction between carbon oxide and the gold hydride (H–Au3–H) producing (HCO–Au3–HCO). The hydride (H–Au3–H) is formed by adsorption of H2 on the simplest negatively charged gold cluster, Au3 . A detailed mechanism is proposed for reaction between O2 and (HCO–Au3–HCO), and the energy budget is calculated for the elementary steps involved in the production of (Au3–CO), H2O, and CO2. Based on the calculated results, an explanation is proposed for the experimental data on interaction of hydrogen, carbon oxide, and oxygen with gold nanoparticles deposited on pyrolytic graphite. Since the gold nanoparticles located on graphite are negatively charged, the calculations are performed accordingly for negatively charged gold-containing particles.

About the authors

M. V Grishin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

A. K Gatin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

S. Yu Sarvadii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

V. G Slutskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Moscow, Russia

D. T Tastaibek

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

V. A Kharitonov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. Raptis C., Garcia H., Stratakis M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 3133. https://doi.org/10.1002/anie.200805838
  2. Taylor S.F.R., Sa J., Hardacre C. // ChemCatChem. 2011. V. 3. P. 119. https://doi.org/10.1002/cctc.201000337
  3. Zhu Y., Tian L., Jiang Z. et. al. // J. Catal. 2011. V. 281. P. 106. https://doi.org/10.1016/j.jcat.2011.04.007
  4. Corma A., Serna P. // Science. 2006. V. 313. P. 332. https://doi.org/10.1126/science.1128383
  5. Guzman J., Gates B.C. // J. Am. Chem. Soc. 2004. V. 126. P. 2672. https://doi.org/10.1021/ja039426e
  6. Ануфриенко В.Ф., Мороз Б.Л., Ларина Т.В. и др. // ДАН. 2007. Т. 413. № 4. С. 493. https://doi.org/10.1134/S001250160704001X
  7. Nikolaev S.A., Golubina E.V., Krotova L.N. et al. // Appl. Catal., B. 2015. V. 168. P. 303. https://doi.org/10.1016/j.apcatb.2014.12.030
  8. Гришин М.В., Гатин А.К., Слуцкий В.Г. и др. // Хим. физика. 2022. Т. 41. № 6. С. 3. https://doi.org/10.31857/S0207401X22060048
  9. Гришин М.В., Гатин А.К., Слуцкий В.Г. и др. // Хим. физика. 2023. Т. 42. № 1. С. 3. https://doi.org/10.31857/S0207401X23010053
  10. Jena N. K., Chandrakumar K. R. S., Ghosh S. K. // RSC Adv. 2012. V. 27. P. 10262. https://doi.org/10.1039/c2ra21032k
  11. Fujitani T., Nakamura I., Takahashi A. // ACS Catal. 2020. V 10. P. 2517. https://doi.org/10.1021/acscatal.9b05195
  12. Гатин А.К., Гришин М.В., Гуревич С.А. и др. // Изв. АН. Сер. хим. 2014. № 8. С. 1696. https://doi.org/10.1007/s11172-014-0655-y
  13. Гришин М.В., Баймухамбетова Д.Т., Гатин А.К. и др. // Хим. физика. 2025. Т. 44. № 1. С. 44. https://doi.org/10.31857/S0207401X25010056
  14. Гришин М.В., Гатин А.К., Дохликова Н.В. и др. // Российские нанотехнологии. 2016. Т. 11. № 11–12. С. 49. https://doi.org/10.1134/S1995078016060112
  15. Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2025. Т. 44. № 5. С. 33. https://doi.org/10.31857/S0207401X25050044
  16. Гатин А.К., Гришин М.В., Сарвадий С.Ю., Шуб Б.Р. // Хим. физика. 2018. Т. 37. № 3. С. 48 https://doi.org/10.7868/S0207401X18030081
  17. Hamers R.J., Wang Y.J. // Chem. Rev. 1996. V. 96. P. 1261 https://doi.org/10.1021/cr950213k
  18. Гатин А.К., Гришин М.В., Далидчик Ф.И., Ковалевский С.А., Колченко Н.Н. // Хим. физика. 2006. Т. 25. № 6. С. 17.
  19. Ozaki T. // Phys. Rev. B. 2003. V. 67. P. 155108. https://doi.org/10.1103/Phys/RevB.67.155108
  20. Ozaki T., Kino H. // Phys. Rev. B. 2004. V. 69. P. 195113. https://doi.org/10.1103/PhysRevB.69.195113

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).