Oxidative conversion of ethanol to syngas in a moving bed reactor. Effect of gas-dynamic factors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental study of oxidative conversion of ethanol to syngas in a filtration combustion moving bed reactor was conducted. The dependence of the composition of gaseous products on the flow rate of gaseous oxidizer at a constant excess air coefficient was investigated. The nonuniformity of the gas composition over the reactor cross-section was detected. A richer mixture flows in the central part of the reactor — the excess air coefficient values were 20–30% lower than the average value, and a leaner mixture flows in the near-wall region (15–20% higher than the average value). Numerical modeling of the part of the reactor where ethanol oxidation occurs qualitatively confirmed the presence of nonuniformity reactant concentration field and gas flow rates.

About the authors

A. Yu. Zaichenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: fta@icp.ac.ru
Chernogolovka, Russia

D. N. Podlesniy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: fta@icp.ac.ru
Chernogolovka, Russia

E. V. Polianczyk

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: fta@icp.ac.ru
Chernogolovka, Russia

M. V. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: fta@icp.ac.ru
Chernogolovka, Russia

G. A. Tarasov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Email: fta@icp.ac.ru
Chernogolovka, Russia; Novosibirsk, Russia

M. V. Tsvetkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: fta@icp.ac.ru
Chernogolovka, Russia

References

  1. S.M. Aldoshin, V.S. Arutyunov, V.I. Savchenko, I.V. Se­dov, A.V. Nikitin et al., Russ. J. Phys. Chem. B 15 (3), 498 (2021). https://doi.org/10.1134/S1990793121030039
  2. V.M. Kislov, M.V. Tsvetkov, A.Yu. Zaichenko, D.N. Pod­lesniy, M.V. Salganskaya et al., Russ. J. Phys. Chem. B 17 (4), 947 (2023). https://doi.org/10.1134/S1990793123040255
  3. S.O. Dorofeenko, E.V. Polianczyk, Chem. Eng. J. 292, 183 (2016). https://doi.org/10.1016/j.cej.2016.02.013
  4. M. Toledo, A. Arriagada, N. Ripoll, E.A. Salgansky, M.A. Mujeebu, Renewable Sustainable Energy Rev. 177, 113213 (2023). https://doi.org/10.1016/j.rser.2023.113213
  5. S.S. Kostenko, A.N. Ivanova, A.A. Karnaukh, E.V. Polian­czyk, Russ. J. Phys. Chem. B 18 (4), 1025 (2024). https://doi.org/10.1134/S199079312470057X
  6. D.N. Podlesniy, E.V. Polianczyk, M.V. Tsvetkov, L.S. Yanovsky, A.Yu. Zaichenko, Processes 12, 2690 (2024). https://doi.org/10.3390/pr12122690
  7. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev et al., Russ. J. Phys. Chem. B 17 (4), 974 (2023). https://doi.org/10.1134/S1990793123040309
  8. E.V. Polianczyk, S.O. Dorofeenko, Intern. J. Hydrogen Energy 44 (8), 4079 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.117
  9. S.O. Dorofeenko, E.V. Polianczyk, Ibid Energy 44 (57), 30039 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.208
  10. S.O. Dorofeenko, E.V. Polianczyk, M.V. Tsvetkov, Fuel 363, 131005 (2024). https://doi.org/10.1016/j.fuel.2024.131005
  11. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, M.V. Sal­ganskaya, M.V. Tsvetkov, Ibid 210, 491 (2017). https://doi.org/10.1016/j.fuel.2017.08.103
  12. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, M.V. Sal­ganskaya, M.V. Tsvetkov et al., Intern. J. Hydrogen Energy 45 (I.35), 17270 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.177
  13. D.N. Podlesniy, A.Yu. Zaichenko, M.V. Tsvetkov, M.V. Salganskaya, A.V. Chub et al., Fuel 298, 120862 (2021). https://doi.org/10.1016/j.fuel.2021.120862
  14. S.O. Dorofeenko, D.N. Podlesniy, E.V. Polianczyk, M.V. Sal­ganskaya, M.V. Tsvetkov, L.S. Yanovsky, A.Yu. Zaichenko, Energies 17, 6093 (2024). https://doi.org/10.3390/en17236093
  15. E.A. Salgansky, M.V. Salganskaya, I.V. Sedov, Russ. J. Phys. Chem. B 18 (4), 1042 (2024). https://doi.org/10.1134/S1990793124700593
  16. D.N. Podlesniy, A.Yu. Zaichenko, E.A. Salgansky, M.V. Salganskaya, Intern. J. Heat Mass Transfer 127, 183 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.020
  17. S. Wang, K. Luo, J. Fan, Chem. Eng. Sci. 217, 115550 (2020). https://doi.org/10.1016/j.ces.2020.115550
  18. Y. Xu, J. Musser, T. Li, B. Gopalan, R. Panday et al., Ind. Eng. Chem. Res. 57 (2), 740 (2018). https://doi.org/10.1021/acs.iecr.7b03817
  19. O.R. Walton, R.L. Braun, J. Rheol. 30, 948 (1986). https://doi.org/10.1122/1.549893
  20. J. Ai, J.F. Chen, J.M. Rotter, J.Y. Ooi, Powder Technol. 206 (3), 269 (2011). https://doi.org/10.1016/j.powtec.2010.09.030
  21. J. Ding, D. Gidaspow, AIChE J. 36 (4), 523 (1990). https://doi.org/10.1002/aic.690360404
  22. S. Polesek-Karczewska, P. Hercel, B. Adibimanesh, I. Wardach-Święcicka, Sustainability 16 (19), 8719 (2024). https://doi.org/10.3390/su16198719
  23. M.M.A. Eid, M.A. Habib, M.S. Anower et al., Microsyst. Technol. 27, 1007 (2021). https://doi.org/10.1007/s00542-020-05019-w
  24. B.S. Sazhin, V.B. Sazhin, M.B. Sazhina et al., Uspekhi khimii i khimicheskoi tekhnologii (Advances in chemistry and chemical engineering) 4, 104 (2010) [in Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).