STABILITY OF CALCIUM SULFATE AT THE GASIFICATION OF SOLID FUEL IN THE FILTRATION MODE
- Autores: Tsvetkova Y.Y.1, Zaichenko A.Y.1, Podlesniy D.N.1, Salganskaya M.V.1, Kislov V.M.1, Salgansky E.A.1, Tsvetkov M.V.1
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Edição: Volume 44, Nº 8 (2025)
- Páginas: 81-86
- Seção: Combustion, explosion and shock waves
- URL: https://ogarev-online.ru/0207-401X/article/view/305400
- DOI: https://doi.org/10.31857/S0207401X25080081
- ID: 305400
Citar
Resumo
The regularities of SO2 release from calcium sulfate during the gasification of solid fuel in the filtration combustion mode have been studied. The maximum amounts of SO2 released into the gas phase under real conditions of a laboratory vertical shaft reactor have been estimated. It has been shown that the most important factors determining the stability of CaSO4 are the process temperature and the amount of silicon dioxide in the inorganic part of the solid fuel.
Palavras-chave
Sobre autores
Yu. Tsvetkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
A. Zaichenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
D. Podlesniy
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
M. Salganskaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
V. Kislov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
E. Salgansky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: iulia@icp.ac.ru
Chernogolovka, Russia
M. Tsvetkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: iulia@icp.ac.ru
Chernogolovka, Russia
Bibliografia
- Banerjee A., Paul D. // Energy. 2021. V. 221. 119868. https://doi.org/10.1016/j.energy.2021.119868
- Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
- Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
- Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
- Kislov V.M., Tsvetkova Y.Y., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 374. https://doi.org/10.1134/S1990793123020070
- Yu H., Shan C., Li J., Hou X., Yang L. // J. Environ. Manage. 2024. V. 366. № 121532. https://doi.org/10.1016/j.jenvman.2024.121532
- Xing G., Wang W., Zhao S., Qi L. // Environ. Sci. Pollut. Res. 2023. V. 30. № 31. P. 76471. https://doi.org/10.1007/s11356-023-27872-8
- Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust. Explos. Shock Waves. 2023. V.59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
- Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 980. https://doi.org/10.1134/S199079312470043X
- Cheng J., Zhou J., Liu J. et al. // Prog. Energy Combust. Sci. 2003. V. 29. № 5. P. 381. https://doi.org/10.1016/S0360-1285(03)00030-3
- Matjie R.H., Lesufi J.M., Bunt J.R. et al. // ACS Omega. 2018. V. 3. № 10. P. 14201. https://doi.org/10.1021/acsomega.8b01359
- Zhao L., Du Y., Zeng Y., Kang Z., Sun B. // Energies. 2020. V. 13. № 3. P. 553. https://doi.org/10.3390/en13030553
- Cheah S., Carpenter D.L., Magrini-Bair K.A. // Energy Fuels. 2009. V. 23. № 11. P. 5291. https://doi.org/10.1021/ef900714q
- Go E.S., Ling J.L.J., Solanki B.S. et al. // Environ. Res. 2024. V. 263. P. 119982. https://doi.org/10.1016/j.envres.2024.119982
- Tsvetkova Y., Kislov V., Salganskaya M., Podlesniy D., Salgansky E. // E3S Web Conf. 2024. V. 474. 01010. https://doi.org/10.1051/e3sconf/202447401010
- Tian H., Guo Q., Chang J. // Energy Fuels. 2008. V. 22. № 6. P. 3915. https://doi.org/10.1021/ef800508w
- Jia X., Wang Q., Cen K., Chen L. // Fuel. 2016. V. 163. P. 157. https://doi.org/10.1016/j.fuel.2015.09.054
- Wang Z., Yang W., Liu H. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 142. 104617. https://doi.org/10.1016/j.jaap.2019.05.006
- Xiao R., Song Q. // Combust. and Flame. 2011. V. 158. № 12. P. 2524. https://doi.org/10.1016/j.combustflame.2011.05.011
- Trusov B.G. // Proc. 14th Intern. Conf. Chemical Thermodynamics St. Petersburg: NIIKh SPbGU, 2002. P. 483.
- Salgansky E.A., Salganskaya M.V., Sedov I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1042. https://doi.org/10.1134/S1990793124700593
- Tsvetkov M.V., Polianczyk E.V., Zaichenko A.Y. et al. // Solid Fuel Chem. 2018. V. 52. P. 86. https://doi.org/10.3103/S036152191802009X
- Kislov V.M., Tsvetkova Y.Y., Tsvetkov M.V., Pilipenko E.N., Salganskaya M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 645. https://doi.org/10.1134/S1990793121040187
Arquivos suplementares
