Kinetic analysis of the effect of propylene additive on ignition and combustion of hydrogen-air mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of kinetic analysis are presented taking into account the rates of chemical reactions and heat release when solving problems of spontaneous ignition and laminar combustion of hydrogen-air reactions with a 1% addition of propylene. The solution was obtained using computer modeling. It has been shown that the addition of propylene to hydrogen-air mixtures significantly slows down the course of chemical reactions due to the recombination of atomic hydrogen during spontaneous combustion in the entire range of initial temperatures from 800 to 1400 K, as well as during the propagation of laminar combustion waves in rich and stoichiometric mixtures. However, propylene is a flammable substance, and during its decomposition and oxidation, heat is released, which increases the rate of temperature increase. As a consequence, under certain conditions, in particular at an initial temperature of 800 K, with the reduced rates of chemical reactions of hydrogen oxidation, as well as in the case of lean mixtures, the addition of propylene leads not to an increase, but to a decrease in the ignition delay, and to a significant increase in the temperature and speed of propagation of the combustion wave. Additional data were obtained on the important role played in laminar flames of hydrogen-air mixtures by reactions involving the HO2 radical: the branching reaction HO2+H => OH+OH and the trimolecular reaction H+O2(+M) => HO2(+M), as well as the maximum concentration of the HO2 radical. These reactions proceed at high rates in the low temperature area due to the participation of atomic hydrogen diffusing from the high temperature area of the flame and provide a significant contribution to the release of heat. The maximum concentration of the HO2 radical is achieved at the temperature that presumably corresponds to the “leading zone” of combustion. When propylene is added, the change in the maximum concentration of the radical correlates with the change in the velocity of normal combustion.

About the authors

A. A. Belyaev

Semenov Federal Research Center for Chemical Physics

Email: belyaevIHF@yandex.ru
Moscow, Russia

B. S. Ermolaev

Semenov Federal Research Center for Chemical Physics

Email: belyaevIHF@yandex.ru
Moscow, Russia

I. S. Gordopolova

Merzhanov Institute of Structural Macrokinetics and Materials Science

Author for correspondence.
Email: belyaevIHF@yandex.ru
Chernogolovka, Moscow region, Russia

References

  1. Azatyan V.V., Borisov A.A., Merzhanov A.G. et. al. // Combust. Explos. Shock Waves. 2005. V. 41. No. 1. P. 1.
  2. Azatyan V.V., Pavlov V.A., Shatalov O.P. // Kinetics and Catalysis. 2005. V. 46. No. 6. P. 789.
  3. Azatyan V.V. Chain reactions in the processes of combustion, explosion and detonation of gases. RAS Publs., Chernogolovka, 2017. [in Russian]. ISBN 978-5-9908297-2-5
  4. Azatyan V.V. Chain reactions of combustion, explosion and detonation in gases. Chemical control methods. RAS Publs., Moscow, 2020. [in Russian]. ISBN 978-5-907036-77-2
  5. Bunev V.A., Babkin V.S. // Mendeleev Commun. 2006. V. 16. Issue. 2. P. 104. https://doi.org/10.1070/MC2006v016n02ABEH002270
  6. Azatyan V.V., Baklanov D.I., Gordopolova I.S., Abramov S.K., Piloyan A.A. // The Proc. the Russ. Acad. of Sci. 2007. V. 415. No. 2. P. 210.
  7. Azatyan V.V., Medvedev S.N., Frolov S.M. // Russ. J. Phys. Chem. B. 2010. V. 4. No. 2. P. 300. https://doi.org/10.1134/S199079311002017X
  8. Bunev V.A., Bolshova T.A., Babkin V.S. // Combust. Explos. Shock Waves. 2016. V. 52. No. 3. P. 255. https://doi.org/ 10.1134/S0010508216030011
  9. Smirnov N.N., Nikitin V.F, Mikhalchenko E.V., Stamov L.I. // Combust. Explos. Shock Waves. 2022. V. 58. No. 5. P.564. https://doi.org/ 10.1134/S0010508222050082
  10. Smirnov N.N., Azatyan V.V., Nikitin V.F. et. al. // Int. J. Hydrogen Energy. 2024. V. 49. P. 1315. https://doi.org/ 10.1016/j.ijhydene.2023.11.085
  11. Belyaev A.A., Ermolaev B.S., Gordopolova I.S. // Gorenie I Vzryv. 2024. V. 17. No. 1. P. 27. https://doi.org/10.30826/CE24170103
  12. Belyaev A.A., Ermolaev B.S. // Russ. J. Phys. Chem. B. 2024. V. 18. No. 4. P. 988. https://doi.org/10.1134/S1990793124700532
  13. ANSYS Academic Research CFD. CHEMKIN-Pro 15112. – San Diego, CA, USA: Reaction Design, 2011. CK-TUT-10112-1112-UG-1.
  14. NUIGMech1.1. National University of Ireland Galway, 2020. https://www.universityofgalway.ie/combustion­chemistrycentre/mechanismdownloads/
  15. Arutyunov V.S., Arutyunov A.V., Belyaev A.A., Troshin K.Ya. // Russ. Chem. Rev. 2023. V. 92. No. 7. RCR5084. https://doi.org/ 10.59761/RCR5084
  16. Qin Z., Yang H., Gardiner W.C. // Combust. Flame. 2001. V. 124. P. 246.
  17. Burke S.M., Metcalfe W., Herbinet O. et. al. // Combust. Flame. 2014. V. 161. P. 2765.
  18. http: //dx.doi.org/10.1016/j.combustflame.2014.05.010
  19. Burke S.M., Burke U., Mc Donagh R. et. al. // Combust. Flame. 2015. V. 162. No. 2. P. 296. http://dx.doi.org/10.1016/j.combustflame.2014.07.032
  20. Kozlov P.V., Kotov V.A., Gerasimov G.Ya., Leva­shov V.Yu., Bykova N.G., Zabelinskii I.E. // Russ. J. Phys. Chem. B. 2024. V.18. No.4. P.1019. https://doi.org/10.1134/S1990793124700568
  21. Poghosyan N.M., Poghosyan M.Dj., Davtyan A.H. et. al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P.745. https://doi.org/ 10.1134/S1990793124700040
  22. Gel’fand B.E. // Combust. Explos. Shock Waves. 2002. V. 38. No. 5. P. 581.
  23. Lewis B., von Elbe G. Combustion, Flames and explosions of gases. Academic press inc., New York and London, 1961.
  24. Dahoe A.E. // Journal of Loss Prevention in the Process Industries. 2005. V. 18. No. 3. P. 152. https://doi.org/ 10.1016/j.jlp.2005.03.007
  25. Gel’fand B.E., Popov O.E., Chayvanov B.B. Hydrogen: combustion and explosion parameters. M.: Fizmatlit, 2008. [in Russian]. ISBN: 978-5-9221-0898-0
  26. Tereza A.M., Agafonov G.L., Anderzhanov E.K. // Russ. J. Phys. Chem. B. 2023. V.17. No. 4. P.974. https://doi.org/ 10.1134/S1990793123040309
  27. Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. The mathematical theory of combustion and explosions. Moscow: Nauka, 1980. [in Russian].
  28. Bakhman N.N., Belyaev A.A. Combustion of hetero­geneous condensed systems. Moscow: Nauka, 1967. [in Russian].
  29. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et. al. // Russ. J. Phys. Chem. B. 2023. V.17. No. 6. P. 1294. https://doi.org/ 10.1134/S1990793123060246

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).