Structure and morphology of cobalt doped cubic–rhombohedhral In2O3

Capa

Citar

Texto integral

Resumo

The influence of cobalt additives on the phase composition, structural parameters, and morphology of indium oxide containing a mixture of crystalline phases has been studied. The hydrothermal synthesis method was used to obtain the corresponding systems. It has been shown that during the hydrothermal reaction, a mixture of phases of indium hydroxide and oxihydroxide is formed, which, in turn, after thermal decomposition, transform into cubic and rhombohedral indium oxide, respectively. Depending on the concentration of the introduced cobalt, the ratio between the phases changes. At a concentration of 0.05 at.% Co, the cubic phase prevails, while at an introduction of 0.25 at.% the rhombohedral compared to the undoped sample. An increase in the concentration of cobalt leads to a decrease in the particle size, as well as an increase in the specific surface area and porosity of the composites. At the same time, the introduction of cobalt does not significantly affect the morphology of the resulting systems.

Sobre autores

M. Ikim

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ikimmary1104@gmail.com
Rússia, Moscow

A. Erofeeva

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

E. Spiridonova

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

V. Gromov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

G. Gerasimov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

L. Trakhtenberg

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: ikimmary1104@gmail.com
Rússia, Moscow; Moscow

Bibliografia

  1. M.I. Ikim, G.N. Gerasimov, V.F. Gromov, O.J. Ilegbusi, L.I. Trakhtenberg. Int. J. Mol. Sci. 24, 1570 (2023).
  2. L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 17, 600 (2023).
  3. E. Cao, L. Wu, Y. Zhang, L. Sun, Z. Yu, Z. Nie. Appl. Surf. Sci. 613, 156045 (2023).
  4. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 1180 (2022).
  5. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 17, 774 (2023).
  6. S.C. Lemos, F.C. Romeiro, L.F. de Paula, R.F. Gonçalves, A.P. de Moura, M.M. Ferrer, R.C. Lima. J. Solid State Chem. 249, 58 (2017).
  7. S.C. Lemos, E. Nossol, J.L. Ferrari, E.O. Gomes, J. Andres, L. Gracia, R. C. Lima. Inorg. Chem. 58, 11738 (2019).
  8. P. Li, C. Cai, T. Cheng, Y. Huang. RSC Adv. 7, 50760 (2017).
  9. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 18, 283 (2024).
  10. C. Chen, D. Chen, X. Jiao, C. Wang. Chem. Comm. 44, 4632 (2006).
  11. F. Chen, M. Yang, X. Wang, Y. Song, L. Guo, N. Xie, G. Lu. Sens. Actuators B: Chem. 290, 459 (2019).
  12. M.I. Ikim, G.N. Gerasimov, V.F. Gromov, O.J. Ilegbusi, L.I. Trakhtenberg. Nano Materials Sci. (2023).
  13. K.S. Sing, Pure Appl. Chem. 57, 603 (1985).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).