Дипольный момент перехода S0 → S1 хлорофилла a в растворителях с различным индексом рефракции

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведен расчет зависимости дипольного момента перехода S0 → S1 хлорофилла a от величины индекса рефракции n растворителя. Проанализированы взаимодействия между электрическим полем световой волны, электронным переходом пигмента в возбужденное состояние и диэлектрической поляризацией оптической среды. Эффект реактивного увеличения переходного дипольного момента молекулы хлорофилла a в растворителях с различной величиной индекса рефракции рассчитан в рамках нестационарной теории функционала плотности (TD–DFT) с использованием гибридного функционала LC-ωPBE и модели поляризуемого континуума. Расчеты ab initio аппроксимированы моделью реактивного поля Онзагера с эффективной поляризуемостью хлорофилла равной 21 Å3. Модель количественно описывает экспериментальную зависимость коэффициента экстинкции хлорофилла a в растворителях с индексом рефракции 1.3 < n < 1.7. В белковом окружении с индексом рефракции n = 1.4 величина дипольного момента перехода хлорофилла составляет 5.5 Д. Для этого окружения было рассчитано распределение электростатического потенциала в основном и возбужденном состояниях хлорофилла; расчеты ab initio аппроксимированы набором парциальных переходных зарядов, расположенных на тяжелых атомах π-сопряженной системы молекулы хлорофилла.

Об авторах

Д. А. Черепанов

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского
Московского государственного университета им. М.В. Ломоносова

Email: cherepanov@belozersky.msu.ru
Россия, Москва; Россия, Москва

Г. Е. Милановский

Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского
Московского государственного университета им. М.В. Ломоносова

Email: cherepanov@belozersky.msu.ru
Россия, Москва

А. В. Айбуш

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: cherepanov@belozersky.msu.ru
Россия, Москва

В. А. Надточенко

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: cherepanov@belozersky.msu.ru
Россия, Москва; Россия, Москва

Список литературы

  1. Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249; https://doi.org/10.1021/acs.chemrev.6b00002
  2. Zucchelli G., Jennings R.C., Garlaschi F.M. et al. // Biophys. J. 2002. V. 82. № 1. P. 378; https://doi.org/10.1016/S0006-3495(02)75402-7
  3. Madjet M.E., Abdurahman A., Renger T. // J. Phys. Chem. B. 2006. V. 110. № 34. P. 17268;. https://doi.org/10.1021/jp0615398
  4. Seely G.R., Jensen R.G. // Spectrochim. Acta. 1965. V. 21. № 10. P. 1835; https://doi.org/10.1016/0371-1951(65)80095-9
  5. Houssier C., Sauer K. // J. Amer. Chem. Soc. 1970. V. 92. № 4. P. 779; https://doi.org/10.1021/ja00707a007
  6. Colbow K. // BBA – Bioenerg. 1973. V. 314. № 3. P. 320; https://doi.org/10.1016/0005-2728(73)90116-3
  7. Shipman L.L., Cotton T.M., Norris J.R., Katz J.J. // J. Amer. Chem. Soc. 1976. V. 98. № 25. P. 8222; https://doi.org/10.1021/ja00441a056
  8. Linke M., Lauer A., Von Haimberger T. et al. // Ibid. 2008. V. 130. № 45. P. 14904; https://doi.org/10.1021/ja804096s
  9. Shipman L.L. // Photochem. Photobiol. 1977. V. 26. № 3. P. 287; https://doi.org/10.1111/j.1751-1097.1977.tb07486.x
  10. Knox R.S. // Ibid. 2003. V. 77. № 5. P. 492; https://doi.org/10.1562/0031-8655(2003)0770492-daosoc2.0.co2
  11. Oviedo M.B., Sánchez C.G. // J. Phys. Chem. A. 2011. V. 115. № 44. P. 12280; https://doi.org/10.1021/jp203826q
  12. Khokhlov D., Belov A. // Biophys. Chem. 2019. V. 246. P. 16; https://doi.org/10.1016/j.bpc.2019.01.001
  13. Birge R.R., Sullivan M.J., Kohler B.E. // J. Amer. Chem. Soc. 1976. V. 98. № 2. P. 358; https://doi.org/10.1021/ja00418a007
  14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
  15. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. № 1–3. P. 51; https://doi.org/10.1016/j.cplett.2004.06.011
  16. Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044108; https://doi.org/10.1063/1.3185673
  17. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999; https://doi.org/10.1021/cr9904009
  18. Marenich A. V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378; https://doi.org/10.1021/jp810292n
  19. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
  20. Черепанов Д.А., Милановский Г.Е., Надточенко В.А., Семёнов А.Ю. // Хим. физика. 2023. Т. 42. № 5.
  21. Chako N.Q. // J. Chem. Phys. 1934. V. 2. № 10. P. 644; https://doi.org/10.1063/1.1749368
  22. Lorentz H.A. The Theory of Electrons. 2nd edn. Leipzig, New York: Dover, 1952.
  23. Onsagbr L. // J. Amer. Chem. Soc. 1936. V. 58. № 8. P. 1486; https://doi.org/10.1021/ja01299a050
  24. Fröhlich H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Clarendon Press, 1949.
  25. Böttcher C.J.F., van Belle O.C., Bordewijk P., Rip A. Theory of electric polarization. 2nd ed. V. 1. Dielectrics in static fields. Amsterdam, New York: Elsevier Scientific Pub. Co, 1974.
  26. Mulliken R.S., Rieke C.A. // Rep. Prog. Phys. 1941. V. 8. № 1. P. 231; https://doi.org/10.1088/0034-4885/8/1/312
  27. Pickett L.W., Paddock E., Sackter E. // J. Amer. Chem. Soc. 1941. V. 63. № 4. P. 1073; https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03
  28. Jacobs L.E., Platt J.R. // J. Chem. Phys. 1948. V. 16. № 12. P. 1137; https://doi.org/10.1063/1.1746745
  29. Neporent B.S., Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 634. P. 1954.
  30. Moffitt W., Moscownz A. // J. Chem. Phys. 1959. V. 30. № 3. P. 648; https://doi.org/10.1063/1.1730025
  31. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 255.
  32. Lorenz L. // Ann. Phys. 1880. V. 247. № 9. P. 70; https://doi.org/10.1002/andp.18802470905
  33. Pacak P. // J. Solut. Chem. 1987. V. 16. № 1. P. 71; https://doi.org/10.1007/BF00647016
  34. Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 646. P. 1954.
  35. Schuyer J. // Recl. des Trav. Chim. des Pays-Bas. 1953. V. 72. № 11. P. 933; https://doi.org/10.1002/recl.19530721104
  36. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 395.
  37. Liptay W. // Z. Naturforschg. A. 1966. V. 21. № 10. P. 1605; https://doi.org/10.1515/zna-1966-1010
  38. Weigang O.E. // J. Chem. Phys. 1964. V. 41. № 5. P. 1435; https://doi.org/10.1063/1.1726086
  39. Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
  40. Karakas A., Ceylan Y., Karakaya M. et al. // Open Chem. 2018. V. 16. № 1. P. 1242; https://doi.org/10.1515/chem-2018-0134
  41. Knox R.S., van Amerongen H. // J. Phys. Chem. B. 2002. V. 106. № 20. P. 5289; https://doi.org/10.1021/jp013927+
  42. Knox R.S., Spring B.Q. // Photochem. Photobiol. 2003. V. 77. № 5. P. 497; https://doi.org/10.1562/0031-8655(2003)0770497-dsitc2.0.co2
  43. Adolphs J., Müh F., Madjet M.E.A. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 10. P. 3331; https://doi.org/10.1021/ja9072222
  44. Novoderezhkin V.I., Palacios M.A., Van Amerongen H., Van Grondelle R. // J. Phys. Chem. B. 2005. V. 109. № 20. P. 10493; https://doi.org/10.1021/jp044082f
  45. Adolphs J., Müh F., Madjet M.E.A., Renger T. // Photosynth. Res. 2008. V. 95. № 2–3. P. 197; https://doi.org/10.1007/s11120-007-9248-z
  46. Krawczyk S. // BBA – Bioenerg. 1991. V. 1056. № 1. P. 64; https://doi.org/10.1016/S0005-2728(05)80073-8
  47. Altmann R.B., Haarer D., Renge I. // Chem. Phys. Lett. 1993. V. 216. № 3–6. P. 281; https://doi.org/10.1016/0009-2614(93)90095-I
  48. Хохлова С.С., Михайлова В.А., Иванов А.И. // ЖФХ. 2008. Т. 82. № 6. С. 1161.
  49. Van Manen H.J., Verkuijlen P., Wittendorp P. et al. // Biophys. J. 2008. V. 94. № 8. P. L67; https://doi.org/10.1529/biophysj.107.127837
  50. Vörös J. // Biophys. J. 2004. V. 87. № 1. P. 553; https://doi.org/10.1529/biophysj.103.030072
  51. Zölls S., Gregoritza M., Tantipolphan R. et al. // J. Pharm. Sci. 2013. V. 102. № 5. P. 1434; https://doi.org/10.1002/jps.23479
  52. Byrdin M., Jordan P., Krauss N. et al. // Biophys. J. 2002. V. 83. № 1. P. 433; https://doi.org/10.1016/S0006-3495(02)75181-3
  53. Yang M., Damjanović A., Vaswani H.M., Fleming G.R. // Ibid. 2003. V. 85. № 1. P. 140; https://doi.org/10.1016/S0006-3495(03)74461-0
  54. Akhtar P., Caspy I., Nowakowski P.J. et al. // J. Amer. Chem. Soc. 2021. V. 143. № 36. P. 14601; https://doi.org/10.1021/jacs.1c05010
  55. Kimura A., Kitoh-Nishioka H., Aota T., et al. // J. Phys. Chem. B. 2022. V. 126. № 22. P. 4009; https://doi.org/10.1021/acs.jpcb.2c00869
  56. Philipson K.D., Cheng Tsai S., Sauer K. // J. Phys. Chem. 1971. V. 75. № 10. P. 1440; https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (114KB)
3.

Скачать (64KB)
4.

Скачать (213KB)

© Д.А. Черепанов, Г.Е. Милановский, А.В. Айбуш, В.А. Надточенко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».