Vertical structure of the Antarctic polar vortex during sudden stratospheric warmings in 1988, 2002 and 2019 according to satellite observations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the MERRA-2 satellite data and ERA5 reanalysis data, we examined the vertical structure of the Antarctic polar vortex during the sudden stratospheric warming events (SSWs) of 1988, 2002 and 2019. The significant displacements of the polar vortex were observed in 1988 and 2019, and the vortex splitting occurred in 2002. Differences in the vertical dynamics of the Antarctic polar vortex during SSWs recorded due to displacement (1988 and 2019) or vortex splitting (2002) are shown. The weakening, displacement and subsequent breakdown of the polar vortex in 1988 and 2019 was observed first in the upper stratosphere, and then gradually spread into the middle and lower stratosphere within a month. Thus, the SSW in the lower stratosphere was preceded by a significant displacement of the polar vortex in the upper stratosphere a month before the event. While in 2002, before the split, the polar vortex was strong and stable at all stratospheric levels, the split was observed simultaneously in the middle and upper stratosphere, after which the vortex collapsed in the upper stratosphere, and existed for another month in the lower and middle stratosphere. In all cases, a decrease in wind speed along the vortex edge, an increase in temperature inside the vortex, melting of particles of polar stratospheric clouds and a decrease in ozone hole area were observed starting in late August. The earlier recovery of ozone hole occurred on 30 October 1988, 9 November 2002 and 6 November 2019, respectively.

About the authors

V. V. Zuev

Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences

Email: esav.pv@gmail.com
Tomsk, Russia

E. S. Savelieva

Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences; A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: esav.pv@gmail.com
Tomsk, Russia; Moscow, Russia

A. V. Pavlinsky

Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: esav.pv@gmail.com
Tomsk, Russia

References

  1. Ageeva V.Yu., Gruzdev A.N., Elokhov A.S., Mokhov I.I.Sudden stratospheric warmings: statistical characteristics and impact on the total content of NO2and O3// Izv. RAS. Atmospheric and Oceanic Physics. 2017. V. 53. № 5. P. 545–555. doi: 10.7868/S0003351517050014. (In Russian).
  2. Ayarzagüena B., Palmeiro F.M., Barriopedro D., Calvo N., Langematz U., Shibata K.On the representation of major stratospheric warmings in reanalyses // Atmos. Chem. Phys. 2019. V. 19. № 14. P. 9469–9484. doi: 10.5194/acp-19-9469-2019.
  3. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P.The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution // J. Atmos. Sci. 2005. V. 62. № 3. P. 590–602. doi: 10.1175/JAS-3318.1.
  4. Eswaraiah S., Kim J.-H., Lee W., Hwang J., Kumar K.N., Kim Y.H.Unusual changes in the Antarctic middle atmosphere during the 2019 warming in the Southern Hemisphere // Geophys. Res. Lett. 2020. V. 47.№ 19. P. e2020GL089199. doi: 10.1029/2020GL089199.
  5. Feng W., Chipperfield M.P., Roscoe H.K., Remedios J.J., Waterfall A.M., Stiller G.P., Glatthor N., Höpfner M., Wang D.-Y.Three-dimensional model study of the Antarctic ozone hole in 2002 and comparison with 2000 // J. Atmos. Sci. 2005. V. 62. № 3. P. 822–837. doi: 10.1175/JAS-3335.1.
  6. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B.The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Climate. 2017. V. 30. № 14. P. 5419–5454. doi: 10.1175/JCLI-D-16-0758.1.
  7. Goncharenko L.P., Harvey V.L., Greer K.R., Zhang S.-R., Coster A.J.Longitudinally dependent low-latitude ionospheric disturbances linked to the Antarctic sudden stratospheric warming of September 2019 // J. Geophys. Res. 2020. V. 125. № 8. P. e2020JA028199. doi: 10.1029/2020JA028199.
  8. Grooß J.-U., Konopka P., Müller R.Ozone chemistry during the 2002 Antarctic vortex split // J. Atmos. Sci. 2005. V. 62. № 3. P. 860‒870. doi: 10.1175/JAS-3330.1.
  9. Grytsai A.V., Evtushevsky O.M., Milinevsky G.P.Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002 // Ann. Geophys. 2008. V. 26.№ 5. P. 1101–1108. doi: 10.5194/angeo-26-1101-2008.
  10. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N.The ERA5 global reanalysis // Q.J. Roy. Meteor. Soc. 2020. V. 146. № 730. P. 1999–2049. doi: 10.1002/qj.3803.
  11. Hirota I., Kuroi K., Shiotani M.Midwinter warmings in the southern hemisphere stratosphere in 1988 // Q. J. Roy. Meteor. Soc. 1990. V. 116.№ 494. P. 929–941. doi: 10.1002/qj.49711649407.
  12. Hoppel K., Bevilacqua R., Allen D., Nedoluha G., Randall C.POAM III observations of the anomalous 2002 Antarctic ozone hole // Geophys. Res. Lett. 2003. V. 30. № 7. P. 1394. doi: 10.1029/2003GL016899.
  13. Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G.The Antarctic ozone hole during 2018 and 2019 // J. South. Hemisph. Earth Syst. Sci. 2021. V. 71. № 1. P. 66–91. doi: 10.1071/ES20010.
  14. Kogure M., Yue J., Liu H.Gravity wave weakening during the 2019 Antarctic stratospheric sudden warming // Geophys. Res. Lett. 2021. V. 48. № 8. P. e2021GL092537. doi: 10.1029/2021GL092537.
  15. Kuttippurath J., Nikulin G.A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12. № 17. P. 8115–8129. doi: 10.5194/acp-12-8115-2012.
  16. Lim E.-P., Hendon H.H., Butler A.H., Thompson D.W.J., Lawrence Z.D., Scaife A.A., Shepherd T.G., Polichtchouk I., Nakamura H., Kobayashi C., Comer R., Coy L., Dowdy A., Garreaud R.D., Newman P.A., Wang G.The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts // B. Am. Meteorol. Soc. 2021. V. 102.№ 6. P. E1150–E1171. doi: 10.1175/BAMS-D-20-0112.1.
  17. Manney G.L., Sabutis J.L., Allen D.R., Lahoz W.A., Scaife A.A., Randall C.E., Pawson S., Naujokat B., Swinbank R.Simulations of dynamics and transport during the September 2002 Antarctic major warming // J. Atmos. Sci. 2005. V. 62. № 3. P. 690–707. doi: 10.1175/JAS-3313.1.
  18. Manney G.L., Millán L.F., Santee M.L., Wargan K., Lambert A., Neu J.L., Werner F., Lawrence Z.D., Schwartz M.J., Livesey N.J., Read W.G.Signatures of anomalous transport in the 2019/2020 Arctic stratospheric polar vortex // J. Geophys. Res. 2022. V. 127. № 20. P. e2022JD037407. doi: 10.1029/2022JD037407.
  19. Milinevsky G., Evtushevsky O., Klekociuk A., Wang Y., Grytsai A., Shulga V., Ivaniha O.Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica // Int. J. Remote Sens. 2019. V. 41. № 19. P. 7530–7540. doi: 10.1080/2150704X.2020.1763497.
  20. Newman P.A., Kawa S.R., Nash E.R.On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. doi: 10.1029/2004GL020596.
  21. Newman P.A., Nash E.R.The unusual Southern Hemisphere stratosphere winter of 2002 // J. Atmos. Sci. 2005. V. 62.№ 3. P. 614–628. doi: 10.1175/JAS-3323.1.
  22. Noguchi S., Kuroda Y., Kodera K., Watanabe S.Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming // Geophys. Res. Lett. 2020. V. 47. № 15. P. e2020GL088743. doi: 10.1029/2020GL088743.
  23. Roy R., Kuttippurath J., Lefèvre F., Raj S., Kumar P.The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002 // Theor. Appl. Climatol. 2022. V. 149. P. 119–130. doi: 10.1007/s00704-022-04031-6.
  24. Safieddine S., Bouillon M., Paracho A.-C., Jumelet J., Tencé F., Pazmino A., Goutail F., Wespes C., Bekki S., Boynard A., Hadji-Lazaro J., Coheur P.-F., Hurtmans D., Clerbaux C.Antarctic ozone enhancement during the 2019 sudden stratospheric warming event // Geophys. Res. Lett. 2020. V. 47.№ 14. P. e2020GL087810. doi: 10.1029/2020GL087810.
  25. Shen X., Wang L., Osprey S., Hardiman S.C., Scaife A.A., Ma J.The life cycle and variability of Antarctic weak polar vortex events // J. Climate. 2022. V. 35. № 6. P. 2075–2092. doi: 10.1175/JCLI-D-21-0500.1.
  26. Solomon S.Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. doi: 10.1029/1999RG900008.
  27. Stolarski R.S., McPeters R.D., Newman P.A.The ozone hole of 2002 as measured by TOMS // J. Atmos. Sci. 2005. V. 62. № 3. P. 716‒720. doi: 10.1175/JAS-3338.1.
  28. Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J.The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations // J. Geophys. Res. 2020. V. 125. № 18. P. e2020JD033335. doi: 10.1029/2020JD033335.
  29. Waugh D.W., Polvani L.M.Stratospheric polar vortices. In: Polvani L.M., Sobel A.H., Waugh D.W. (Eds.). The Stratosphere: Dynamics, Transport, and Chemistry // Geophysical Monograph Series. 2010. V. 190. P. 43–57. doi: 10.1002/9781118666630.ch3.
  30. Waugh D.W., Sobel A.H., Polvani L.M.What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98. № 1. P. 37–44. doi: 10.1175/BAMS-D-15-00212.1.
  31. Zuev V.V., Savelieva E.S.Dynamic characteristics of the stratospheric polar vortices // Dokl. Earth Sci. 2024. V. 517. № 1. P. 1240–1248. doi: 10.1134/S1028334X24601895.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».