Regional Remote Sensing Analysis of Fault Tectonics of the Taimyr-Severozemelsky Orogen and Its Role in Ore Formation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a comprehensive analysis of the fault tectonics of the Taimyr-Severozemelsky orogen, carried out on a regional scale, are considered. Based on the digital relief model, lineaments were identified using manual and automatic methods. The results obtained in combination with literature data made it possible to carry out tectonophysical reconstructions using the model of P.L. Hancock (1985). Based on the reconstructions, the estimated areas of tectonic structures that had the greatest hydraulic activity during the Late Paleozoic-Early Mesozoic tectonic-mineragenic cycle were identified, with which ore occurrences of scarce types of strategic mineral raw materials of Taimyr are associated (gold, rare metals, copper, lead, zinc, etc.) Identified areas promising for the discovery of new ore objects.

全文:

受限制的访问

作者简介

V. Minaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: minaev2403@mail.ru
俄罗斯联邦, Moscow

S. Ustinov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: minaev2403@mail.ru
俄罗斯联邦, Moscow

V. Petrov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: minaev2403@mail.ru
俄罗斯联邦, Moscow

A. Svecherevsky

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: minaev2403@mail.ru
俄罗斯联邦, Moscow

I. Nafigin

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: minaev2403@mail.ru
俄罗斯联邦, Moscow

参考

  1. Anderson E.M. The dynamics of faulting // Transactions of the Edinburgh Geological Society, 8. 1905. P. 387–402.
  2. Afanasenkov A.P., Unger A.V., Lugovaya O.V., Chikishev A.A., Nikishin A.M., Bordunov S.I., Yakovishina E.V. The tectonics and stages of the geological history of the Yenisei–Khatanga basin and the conjugate Taimyr orogeny // Geotectonics. 2016. Т. 50. № 2. pp. 161–178.
  3. Bryantseva G.V., Demina L.I., Promyslova M.Yu., Kosevich N.I. Neotectonic structures of the Western Taimyr // Bulletin of Moscow University. Ser. 4. Geology. 2019. No. 6. pp. 17–23 (In Russian).
  4. Cherezov A.M., Shirokikh I.N., Vaskov A.S. Structure and zoning of hydrothermal deposits in fracture zones. Novosibirsk, Science. Siberian Publishing Company, 1992, 104 p. (In Russian).
  5. Demina L.I., Zakharov V.S., Promyslova M.Yu., Zavyalov S.P. The interrelations between collisional and trap magmatism of Taimyr based on geological data and modeling results // Bulletin of Moscow University. Episode 4: Geology. 2018. No. 1. P. 16–25 (In Russian).
  6. Enoh M.A., Okeke F.I., Okeke U.C. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon seepage in Ugwueme, South-Eastern Nigeria. Geod. Cartogr. 2021. 47. P. 34–44.
  7. Fuchs K., Müller B. World Stress Map of the Earth: a key to tectonic processes and technological applications // Naturwissenschaften. 2001. № 88. P. 357–371.
  8. Galyamov A.l., Volkov A.V., Murashov K.Yu. Spatial relation of metallogeny to Taimyr deep structures // proceedings of the fersman scientific session of GI KSC RAS. 2022. № 19. С. 42–46 (In Russian).
  9. Grishkov G.A., Nafigin I.O., Ustinov S.A., Petrov V.A., Minaev V.A. Development of a technique for automatic lineament allocation based on a neural network approach // Exploration of the Earth from Space. 2023. No. 6. P. 86–97 (In Russian).
  10. Gzovsky M.V. Fundamentals of tectonophysics. M.: Nauka, 1975. 536 p (In Russian).
  11. Hancock P.L. Brittle microtectonics: principles and practice // J. of Struct. Geol. 1985. V. 7. N 3/4. P. 437–457.4–368.
  12. Jaeger J.C., Cook N.G.W., Zimmerman R.W. Fundamentals of Rock Mechanics. 4th edit. Blackwell Publishing, 2007. 486 p.
  13. Ovsyuchenko A.N., Zhostkov R.A., Edemskii D.E., Sobisevich A.l., Sysolin A.I., Presnov D.A. Active tectonics of north-eastern Taimyr (Byrranga mountains) and questions of seismo-tectonic regionalization of the Russian Arctic // Physics of the Earth. 2023. No. 6. P. 207–223.
  14. Paplinski A. Directional filtering in edge detection. IEEE Trans. Image Processing 1998. 7. P. 611–615.
  15. Petrov V.A., Sim L.A., Nasimov R.M., Shchukin S.I. Fault tectonics, neotectonic stresses, and hidden uranium mineralization in the area adjacent to the Strel'tsovka caldera // Geology of Ore Deposits. 2010. Т. 52. № 4. С. 279–288.
  16. Proskurnin V.F. Mineragenic analysis of the Taimyr-Severozemelsky region and assessment of its gold-bearing potential. Abstract of the dissertation for the degree of Doctor of Geological and Mineralogical Sciences. St. Petersburg, 2013, 45 p. (In Russian).
  17. Proskurnin V.F., Petrov O.V., Romanov A.P., Kurbatov I.I., Gavrish A.V., Proskurnina M.A. Central Arctic gold-bearing copper-molybdenum-porphyric belt // Regional geology and metallogeny. 2021. No. 85. pp. 31–49 (In Russian).
  18. Rebetsky Yu.L. Mechanism of tectonic stress generation in the zones of high vertical movements // Physical mesomechanics. 2008. No. 11. T.1. pp. 66–73 (In Russian).
  19. Rebetsky Yu.L., Kuchai O.A., Sycheva N.A. Method of cataclastic analysis of faults and results of calculations of the modern stress state in the crust near plate boundaries and for intraplate mountain-fold orogens // Tectonophysics and current issues of Earth sciences. To the 40th anniversary of the creation of M.V. Gzovsky Laboratory of Tectonophysics at the Institute of Physical Sciences of the Russian Academy of Sciences: Materials of the All-Russian Conference (October 13–17, 2008). M.: Publishing house IPE RAS, 2009. T. 1. pp. 340–366 (In Russian).
  20. Rebetsky Yu.L., Sim L.A., Marinin A.V. From slip surfaces to tectonic stresses. Methods and algorithms. M.: GEOS, 2017. 235 p. (In Russian).
  21. Seminsky K.Zh. Internal structure of continental fault zones: tectonophysical aspect. Novosibirsk: Publishing house SB RAS, Branch “GEO”, 2003. 243 p. (In Russian).
  22. Sivkov D.V., Chitalin A.F., Dergachev A.L. Application of lineament analysis to identify patterns of localization of gold mineralization on the territory of the Taryn ore field in the Republic of Sakha (Yakutia) // Research of the Earth from Space. 2020. No. 1. P. 3–19 (In Russian).
  23. State geological map of the Russian Federation, scale 1:1,000,000. Taimyr-Severozemelskaya series. S-48 (Lake Taimyr, eastern part). Authors: Gavrish A.V., Proskurin V.F., Mezhubovsky V.V., Trofimov V.V. Ch. scientific ed.: Proskurin V.F. Cartographic factory “VSEGEI”, 2009.
  24. State geological map of the Russian Federation, scale 1:1,000,000. North Kara-Barents Sea and Taimyr-Severozemelsky series. T-45-48 (m. Chelyuskin). Authors: Makarieva E.M., Gavrish A.V. Ch. scientific ed.: Schneider G.V. FSUE “PMGRE”, 2011.
  25. State geological map of the Russian Federation, scale 1:1,000,000. Taimyr-Severozemelskaya series. S-49 (Khatanga Bay). Authors: Gavrish A.V., Proskurin V.F., Mezhubovsky V.V. Ch. scientific ed.: Proskurin V.F. Cartographic factory “VSEGEI”, 2013.
  26. State geological map of the Russian Federation, scale 1:1,000,000. Taimyr-Severozemelskaya series. S-46 (Tareya river). Authors: Gavrish A.V., Proskurin V.F. Ch. scientific ed.: Nagaitseva N.N. Cartographic factory “VSEGEI”, 2014.
  27. State geological map of the Russian Federation, scale 1:1,000,000. Taimyr-Severozemelskaya series. S-47 (Lake Taimyr, western part). Authors: Gavrish A.V., Proskurin V.F. Ch. scientific ed.: Proskurin V.F. Cartographic factory “VSEGEI”, 2015.
  28. State geological map of the Russian Federation, scale 1:1,000,000. Taimyr-Severozemelskaya series. S-44 (Dixon), S-45 (Ust-Tareya). Authors: Makarieva E.M., Molchanova E.V. Ch. scientific ed.: Gusev E.A., Nagaitseva N.N. Cartographic factory “VSEGEI”, 2020.
  29. Suzen M.L., Toprak V. Filtering of Satellite Images in Geological Lineament Analyses: An Application to a Fault Zone in Central Turkey. Int. J. Remote Sens. 1998. 19. pp. 1101–1114.
  30. Ustinov S.A., Petrov V.A. Use of detailed digital relief models for structural-lineament analysis (using the example of the Urtui granite massif, SE Transbaikalia). // Geoinformatics. 2016. No. 2. P. 51-60 (In Russian).
  31. Vernikovsky V.A., Polyansky O.P., Babichev A.V., Vernikovskaya A.E., Proskurnin V.F., Matushkin N.Yu. Tectonothermal model for the late paleozoic syncollisional formation stage of the Kara orogen (Northern Taimyr, Central Arctic) // Geology and geophysics. 2022. No. 4. P. 440–457 (In Russian).
  32. Zobak M.D. Geomechanics of oil deposits. Izhevsk: Institute of Computer Research, 2018. 479 p. (In Russian).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic tectonic map of the Taimyr-Severozemelsky orogen (compiled from (Vernikovsky et al., 2022; State..., 2009; 2011; 2013; 2014; 2015; 2020). 1-2 - southern domain - South Taimyr fold zone (deformed passive continental margin of the Siberian Platform): 1 - predominantly dolomites and limestones (O-C2); 2 - predominantly sandstones, mudstones, coal-bearing sediments (C3-P2); 3-5 - deformed trap formations (P3-T1): 3 - basalts and tuffs, 4 - dolerite sills, 5 - alkaline syenites, granites, monzonites; 6-11 - central domain - Central Taimyr accretionary belt: 6 - cratonic terranes, 7 - Neoproterozoic granitoids (940-850 Ma), 8 - predominantly Neoproterozoic granitoids (940-850 Ma), 3 - tuffs and tuffs, 4 - dolerite sills, 5 - alkaline syenites, granites, monzonites. years), 8 - predominantly island-arc complexes (NP1), 9 - terranes of carbonate complexes, 10 - sedimentary cover (NP3-C1), 11 - northern domain - deformed and metamorphosed rocks of the passive continental margin of the Kara microcontinent: rhythmically interbedded metasandstones, metasiltstones, other metapelites, and coal shales (NP3-Є); 12 - syncollisional granites; 13 - postcollisional granites; 14 - sediments of Jurassic-Quaternary age, including the Yenisei-Khatanga Trough; 15 - major faults: I - Main Taimyrsky-Diabase, II - Pyasino-Faddeyevsky; 16 - metallic mineral deposits (primary); 17 - metallic mineral ore occurrences.

下载 (681KB)
3. Fig. 2. Digital elevation model visualised in a GIS environment with a spatial resolution of 1 km/pixel with lineaments (blue lines) extracted by the neural network and a rose-diagram of their orientations. The colour scale reflects elevation marks of the relief.

下载 (923KB)
4. Fig. 3. Digital elevation model visualised in a GIS environment with a spatial resolution of 1 km/pixel with manually selected extended lineaments (blue lines) and a rose-diagram of their orientations. The colour scale reflects elevation marks of the relief.

下载 (748KB)
5. Fig. 4. Systems of echeloned structural elements formed in a shear fault zone during simple shearing (Hancock, 1985): Y - trunk shear, R and R' - conjugate Riedel shears, X, P - secondary shears, e - detachments, n - dumps, t - swells, f - folds, S1 - cleavage, σ1 - axis of maximum compression, σ3 - axis of maximum extension.

下载 (133KB)
6. Fig. 5. General scheme of shear tendency (μ) determination based on the combination of regional anisotropic stress orientations (black symbols - orientation of the maximum compression axis) with orientations of rupture segments with calculation of shear (τ) to normal stress ratio (σn) for fault segments: S1 - orientation of the maximum compression axis, S2 - minimum compression axis, SH - regional orientation of the maximum compression axis. Yellow and orange colours indicate segments showing the highest degree of hydraulic activity (Fuchs and Müller, 2001).

下载 (412KB)
7. Fig. 6. Scheme of spatial distribution of faults of the Taimyr-North-Earth orogen according to the materials of state geological maps at a scale of 1:1,000,000, and a rose-diagram of their orientations. Faults: 1 - Main Taimyr; 2 - Diabase; 3 - Pyasino-Faddeyevsky; 4 - Pogranichny; 5 - Mamontovo-Yarsky; 6 - Chukchinsky; 7 - Severo-Pyasinsky. N - number of faults.

下载 (686KB)
8. Fig. 7. a-h - schemes of relative specific densities of lineaments by orientation intervals with identified trends (shown in bold black lines) according to the method (Sivkov et al, 2020): a - 11°-34°; b - 33.5°-56.5°; c - 56°-79°; d - 78.5°-101.5°; e - 101°-124°; f - 123.5°-146.5°; g - 146°-169°; h - 168.5°-11.5°; i - rose-diagram of lineament trends orientation. N - number of objects used to construct the rose-diagram.

下载 (810KB)
9. Fig. 8. a–d – Reconstruction of the HDPE for the Main Taimyr-Diabase block zone based on the P.L. Hancock model for: extended lineaments selected manually (a); lineamete density trends: with a shear line drawn according to the fault route (b); with a shear line drawn according to the prevailing system of secondary chips (c); d – with a shift line drawn according to the north-western lineament trend system. 1 – Y-cracks; 2 – R-cracks; 3 – R’-cracks; 4 – P-cracks; 5 – X-cracks; 6 – T-cracks; 7 – unknown; 8 – fault “trend" (shear line). The blue arrows indicate the orientation of the maximum compression axis; the green arrows indicate the orientation of the maximum stretching axis. N is the number of objects used to construct the rose diagram.

下载 (714KB)
10. Fig. 9. a–d – Reconstruction of HDPE for the Pyasino-Faddeev block zone based on the P.L. Hancock model for: extended lineaments selected manually (a); lineamete density trends: with a shear line drawn according to the fault route (b); with a shear line drawn according to the prevailing system of secondary chips (c); d – with a shift line drawn according to the northwestern lineament trend system. 1 – Y-cracks; 2 – R-cracks; 3 – R’-cracks; 4 – P-cracks; 5 – X-cracks; 6 – T-cracks; 7 – unknown; 8 – fault “trend" (shear line). The blue arrows indicate the orientation of the maximum compression axis; the green arrows indicate the orientation of the maximum stretching axis. N is the number of objects used to construct the rose diagram.

下载 (799KB)
11. Fig. 10. The results of the reconstruction of the hydraulic activity of segments of tectonic elements: a – classified segments of the entire fault network of the State Geological Map and trends in lineament densities; b – diagram of the zones of influence (orange lines) of fault segments and segments of trends in lineament densities of permeable and increased permeability. The areas of overlap of the zones of influence of several faults are colored red. 1 – impermeable segments; 2 – weakly permeable segments; 3 – medium permeability segments; 4 – permeable segments; 5 – segments of increased permeability, 6 – hydrothermal deposits of metallic minerals; 7 – hydrothermal ore deposits of minerals.

下载 (853KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».