Criteria for the spatial distribution of polymetallic ore objects as a basis for creating a predictive search model using a neural network approach (using the example of the territory of South-Eastern Transbaikalia)
- Authors: Grishkov G.A.1, Nafigin I.O.1, Ustinov S.A.1, Petrov V.A.1, Minaev V.A.1
-
Affiliations:
- Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
- Issue: No 4 (2024)
- Pages: 22-37
- Section: МЕТОДЫ И СРЕДСТВА ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ КОСМИЧЕСКОЙ ИНФОРМАЦИИ
- URL: https://ogarev-online.ru/0205-9614/article/view/272359
- DOI: https://doi.org/10.31857/S0205961424040021
- EDN: https://elibrary.ru/EMJIMB
- ID: 272359
Cite item
Abstract
The work is aimed at identifying and substantiating criteria that indirectly or actually control ore objects in order to create a predictive neural network model of the metallogenic potential of southeastern Transbaikalia. For this purpose, geological, geophysical and cartographic materials were collected and processed, including the results of the analysis of remote sensing data. Statistical analysis of the array of collected data made it possible to establish a list of the minimum necessary information to identify criteria for the localization of polymetallic ore objects within the territory of southeastern Transbaikalia. As a result, thematic schemes have been prepared reflecting the relationship between the distribution of known polymetallic mineralization zones and the identified geological and spatial features. A correlation analysis was carried out between all the criteria in order to assess the suitability of using the selected features as input data for a future neural network model.
Full Text

About the authors
G. A. Grishkov
Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
Author for correspondence.
Email: gorgulini@yandex.ru
Russian Federation, Moscow
I. O. Nafigin
Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
Email: gorgulini@yandex.ru
Russian Federation, Moscow
S. A. Ustinov
Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
Email: gorgulini@yandex.ru
Russian Federation, Moscow
V. A. Petrov
Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
Email: gorgulini@yandex.ru
Russian Federation, Moscow
V. A. Minaev
Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)
Email: gorgulini@yandex.ru
Russian Federation, Moscow
References
- Bavrina A.P., Borisov I.B. Modern rules for the application of correlation analysis // Medical almanac. 2021. № 3 (68). P. 70–79. (In Russian).
- Gmurman V.E. Probability theory and mathematical statistics: a textbook for universities. M.: Higher School. 2003. 479 p. (In Russian).
- Grishkov G.A., Ustinov S.A., Nafigin I.O., Petrov V.A. Neural networks and the possibilities of their application for the analysis of spatial geological data // Proceedings of the XV International Scientific and Practical Conference. In 7 volumes. Vol. 4. Development of new ideas and trends in Earth sciences: innovative technologies of geological exploration of mining and oil and gas business, well drilling, mathematical modeling and exploration geophysics. Moscow: S. Ordzhonikidze Russian State Geological Exploration University. 2021. P. 33‒36. (In Russian).
- Heritov A.D. SPSS 15: Professional statistical data analysis. St. Petersburg: St. Petersburg. 2007. 416 p. (In Russian).
- Ishchukova L.P., Avdeev B.V., Gubkin G.N., Igoshin Yu.A., Makushin M.F., Popova A.I., Rogova V.P., Spirin E.K., Filipchenko Yu.A., Khomentovsky B.N. Geology of the Urulyunguyevsky ore district and molybdenum-uranium deposits of the Streltsovsky ore field. M.: Geoinformmark. 1998. 382 p. (In Russian).
- Katz Ya.G., Poletaev A.I., Rumyantseva E.F. Fundamentals of lineament tectonics. M.: Nedra. 1986. 140 p. (In Russian).
- Khalafyan A.A. Statistica 6. Statistical data analysis. 3rd ed. Textbook. M.: LLC “BinomPress”. 2008. 512 p. (In Russian).
- Kuznetsov V.V., Brel A.I., Bogoslavets N.N., Elshina S.L., Kuznetsova T.P., Seravina T.V. Metallogeny of the Priagrun structural-formation zone // Domestic Geology. 2018. № 2. P. 32‒43. (In Russian).
- Petrov V.A., Andreeva O.V., Poluektov V.V., Kovalenko D.V. Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the Southern Cis-Argun Region // Geology of Ore Deposits. 2017. V. 59. № 6. P. 431‒452. (In Russian).
- Shivokhin E.A., Ozersky A.F., Artamonova N.A., Dukhovsky A.A., Karasev V.V., Kurylenko A.V., Nadezhdina T.N., Pavlenko Yu.V., Raitina N.I., Shor G.M. Explanatory note: State Geological Map of the Russian Federation. Scale 1:1000000 (third generation). Sheet M-50 (Borzya). St. Petersburg: Publishing house kartrofabrika VSEGEI. 2010. 553 p. (In Russian).
- Tikunov V.S. Geoinformatics: a textbook for students. Moscow: Moscow State University. 2008. 361 p. (In Russian).
- Zverev A.V., Zverev A.T. Application of automated lineament analysis of satellite images in the search for oil and gas fields, prediction of earthquakes, slope processes and migration routes of groundwater // Izvestia of Higher Educational Institutions. Geology and exploration. 2015. № 6. P. 14‒20. (In Russian).
- Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D. The Shuttle Radar Topography Mission // Reviews of Geophysics. 2007. V. 45. № 2. P. 1‒33.
- Glukhov A.N. Tectonic factors of ore genesis of Precambrian terranes on the example of the Prikolymsky uplift and the Omolon massif (Northeast Asia) // Bulletin of St. Petersburg University. Earth Sciences. 2019. V. 64. № 2. P. 219‒248. doi: 10.21638/spbu07.2019.204.
- Gonbadi A.B., Tabatabaei S.H., Carranza E.J.M. Supervised geochemical anomaly detection by pattern recognition // Journal of Geochemical Exploration. 2015. V. 157. P. 81–91.
- Kirkwood C., Cave M., Beamish D., Grebby S., Ferreira A. A machine learning approach to geochemical mapping // Journal of Geochemical Exploration. 2016. V. 167. P. 49–61.
- Kong Q., Trugman D.T., Ross Z.E., Bianco M.J., Meade B.J., Gerstoft P. Machine learning in seismology: Turning data into insights // Seismological Research Letters. 2019. V. 90. № 1. P. 3–14.
- Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks // Communications of the ACM. 2017. V. 60. № 6. P. 84–90. doi: 10.1145/3065386.
- Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L. Machine learning in geosciences and remote sensing // Geoscience Frontiers. 2016. V. 7. № 1. P. 3–10. doi: 10.1016/j.gsf.2015.07.003.
- Li S., Chen J., Xiang J. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data // Neural Computing and Applications. 2019. V. 32. P. 2037–2053. doi: 10.1007/s00521-019-04341-3.
- O’Brien J.J., Spry P.G., Nettleton D., Xu R., Teale G.S. Using random forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia // Journal of Geochemical Exploration. 2015. V. 49. P. 74–86.
- Shen C. A transdisciplinary review of deep learning research and its relevance for water resources scientists // Water Resources Research. 2018. V. 54. № 11. P. 8558–8593.
- Twarakavi N.K.C., Misra D., Bandopadhyay S. Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data // Nat Resour Res. 2006. V. 15. № 1. P. 15–26.
- Valentine A.P., Kalnins L.M. An introduction to learning algorithms and potential applications in geomorphometry and earth surface dynamics // Earth Surface Dynamics. 2016. V. 4. P. 445–460.
- Wang Z., Di H., Shafiq M.A., Alaudah Y., AlRegib G. Successful leveraging of image processing and machine learning in seismic structural interpretation: A review // The Leading Edge. 2018. V. 37. № 6. P. 451–461.
- Xiong Y., Zuo R. Recognition of geochemical anomalies using a deep autoencoder network // Computers & Geosciences. 2016. V. 86. P. 75–82.
- Zhao J., Chen S., Zuo R. Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China // Journal of Geochemical Exploration. 2016. V. 164. P. 54–64.
- Zuo R., Xiong Y., Wang J., Carranza E.J.M. Deep learning and its application in geochemical mapping // Earth-Science Reviews. 2019. V. 192. P. 1–14.
- Zuo R.G., Xiong Y.H. Big data analytics of identifying geochemical anomalies supported by machine learning methods // Nat Resour Res. 2018. V. 27. № 1. P. 5–13.
Supplementary files
