The Spatio-Temporal Variability of Sea Surface Temperature of Bering Sea from ERA5 Reanalysis Data Based on Satellite Information

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Features of spatio-temporal variability of the Bering Sea surface temperature were studied by constructing long-term average distributions for different months and using the method of empirical orthogonal functions based on ERA5 reanalysis data based mainly on satellite information, for the period 1998–2020 (spatial resolution of the data is a quarter of a degree, the time interval is one month). In each spatial cell, for each month, the average long-term values of this parameter were calculated, which showed seasonal changes in thermal conditions in the studied water area. Linear trend coefficients have been determined, which showed a stable tendency to warming of the surface layer of sea waters, most pronounced in summer. Extreme deviations from the average long-term values (anomalies) of the surface temperature of the Bering Sea are considered.

Full Text

Restricted Access

About the authors

G. V. Shevchenko

Sakhalin Branch of “VNIRO” (“SakhNIRO”); Institute of Marine Geology and Geophysics Far Eastern Branch Russian Academy of Sciences

Author for correspondence.
Email: shevchenko_zhora@mail.ru
Russian Federation, Yuzhno-Sakhalinsk; Yuzhno-Sakhalinsk

Zh. R. Tshay

Sakhalin Branch of “VNIRO” (“SakhNIRO”)

Email: shevchenko_zhora@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

D. M. Lozhkin

Sakhalin Branch of “VNIRO” (“SakhNIRO”)

Email: shevchenko_zhora@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

References

  1. Bagrov N. A. Analiticheskoe predstavlenie posledovatel'nosti meteorologicheskikh polei posredstvom estestvennykh ortogonal'nykh sostavlyayushchikh [Analytical representation of a sequence of meteorological fields by means of natural orthogonal components] // Tr. Tsentral'nogo instituta prognozov. 1959. Issue 74. P. 3–24. (In Russian).
  2. Baker M. R., Kivva K. K., Pisareva M. N., Watson J. T., Selivanova Ju. Shifts in the physical environment in the Pacific Arctic and implications for ecological timing and conditions // Deep-Sea Res. II. 2020. V. 177. 104802. doi: 10.1016/j.dsr2.2020.104802.
  3. Basyuk E. O., Zuenko Yu. I. Beringovo more 2018 – ekstremal'no maloledovityi i teplyi god [Bering sea: 2018 as the extreme low-ice and warm year] // Izv. TINRO. 2019. V. 198. P. 119–142. doi: 10.26428/1606-9919-2019-198-119-142. (In Russian).
  4. Danielson S. L., Weingartner T. J., Hedstrom K. S., Aagaard K., Woodgate R. A., Curchitser E., Stabeno P. J. Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait through flow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient // Progress in Oceanography. 2014. V. 125. P. 40–61.
  5. https://doi.org/10.1016/j.pocean.2014.04.006.
  6. Kawaguchi Y., Nishioka J., Nishino S., Fujio S., Lee K., Fujiwara A., Yanagimoto D., Mitsudera H. and Yasuda I. Cold water upwelling near the Anadyr Strait: Observations and simulations. Journal of Geophysical Research: Oceans. 2020. V. 125. e2020JC016238. https://doi.org/10.1029/2020JC016238.
  7. Khen G. V., Basyuk E. O., Sorokin Yu.D., Ustinova E. I., Figurkin A. L. Termicheskie usloviya na poverkhnosti Beringova i Okhotskogo morei v nachale 21-go veka na fone poluvekovoi izmenchivosti [Surface thermal conditions in the Bering and Okhotsk Seas in the early 21 Century against previous semi-centennial changes] // Izv. TINRO. 2008. V. 153. P. 254–263. (In Russian).
  8. Khen G. V., Ustinova E. I., Sorokin Yu. D. Mnogoletnie izmeneniya termicheskikh uslovii na poverkhnosti dal'nevostochnykh morei i SZTO i ikh svyaz' skrupnomasshtabnymi klimaticheskimi protsessami [Long-term changes in thermal conditions on the surface of the Far-Eastern Seas and North-West Pacific and their relationship with large-scale climate processes] // Izv. TINRO. 2020. V. 202, Issue 1. P. 187–207. doi: 10.26428/1606-9919-2022-202-187-207. (In Russian).
  9. Krovnin A. S., Kivva K. V., Muryi G. P., Sumkina A. A. Vliyanie klimaticheskikh faktorov na mezhgodovye kolebaniya zapasov kamchatskoi gorbushi v 2014‒2020 gg. [Influence of climatic factors on interannual variations of kamchatka pink salmon stocks in 2014–2020] // Vopr. rybolovstva. 2021. V. 22. Iss. 4. P. 35–45. doi: 10.36038/0234-2774-2021-22-4-35-45.
  10. Lozhkin D. M., Shevchenko G. V. Trendy temperatury poverhnosti Ohotskogo morya i prilegayushchih akvatorij po sputnikovym dannym 1998–2017 gg. [Trends in the surface temperature of the Sea of Okhotsk and adjacent water areas according to satellite data in 1998–2017] // Issledovanie Zemli iz kosmosa. 2019. Iss. 1. P. 55–61.
  11. Luchin V. A. Srednie mnogoletnie parametry verhnego kvaziodnorodnogo sloya Beringova morya (nizhnyaya granica, temperatura, solenost') i ih vnutrigodovaya izmenchivost' [Mean climatic parameters of the upper mixed layer in the Bering Sea (lower boundary, temperature, salinity) and their annual variability] // Izv. TINRO. 2019. V. 199. P. 214–230. doi: 10.26428/1606-9919-2019-199-214-230.
  12. Overland J. E. Is the climate of Bering Sea warming and affecting the ecosystem? // EOS. 2004. V. 8. Iss. 33. P. 309–316.
  13. Rostov I. D., Dmitrieva E. V., Vorontsov A. A. Tendentsii klimaticheskikh izmenenii termicheskikh uslovii pribrezhnykh akvatoriyakh zapadnoi chasti Beringova morya za poslednie desyatiletiya [Tendencies of climatic changes for thermal conditions in the coastal areas of the Okhotsk Sea in last decades] // Izv. TINRO. 2018. V. 193. P. 167–182. doi: 10.26428/1606-9919-2018-193-167-182. (In Russian).
  14. Shevchenko G. V. and Lozhkin D. M. Prostranstvenno-vremennaya izmenchivost' potoka dlinnovolnovoj radiacii na poverhnosti severo-zapadnoj chasti Tihogo okeana po dannym reanaliza ERA5 [Spatio-Temporal Variability of the Resulting Long-Wave Radiation on the Surface of the Northwestern Pacific Ocean Based on the ERA5 Reanalysis Data] // Physical Oceanography. 2023. V. 30, Iss. 3. P. 331–342. doi: 10.29039/1573-160X-2023-3-331-342. (In Russian, English translation).
  15. Tskhai Zh. R., Shevchenko G. V. Otsenka temperaturnykh anomalii poverkhnosti Okhotskogo morya i prilegayushchikh akvatorii po sputnikovym dannym [Estimate of Extreme Surface Temperature of the Okhotsk Sea and Adjacent Waters from Satellite Data] // Issled. Zemli iz kosmosa. 2013. Iss. 2. P. 50–61. doi: 10.31857/S0205961422010079. EDN HRSJAX. (In Russian).
  16. Tskhai Zh. R., Shevchenko G. V., Lozhkin D. M. Analiz termicheskikh uslovii v severo-zapadnoi chasti Tikhogo okeana po sputnikovym dannym [Analysis of Thermal Conditions in the Northwest Pacific Ocean from Satellite Data] // Issled. Zemli iz kosmosa. 2022. Iss. 1. P. 30–37. doi: 10.31857/S0205961422010079. EDN HRSJAX. (In Russian).
  17. Ustinova E. Extreme events in the thermal state of the Far-Eastern Seas and adjacent waters of the Northwestern Pacific // PICES-2021 Virtual Annual Meeting. Book of Abstract. Victoria, BC, Canada. 2021. P. 26.
  18. Woodgate R. A., Aagaard K., Weingartner T. Monthly temperature, salinity, and transport variability of the Bering Strait through flow // Geophys. Res. Lett. 2005. V. 32. Iss. 4.
  19. https://doi.org/10.1029/2004GL021880.
  20. Woodgate, R. A., T. Weingartner, and R. Lindsay (2010), The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat // Geophys. Res. Lett., 2010. V. 37. L01602. doi: 10.1029/2009GL041621.
  21. Zaharchuk E. A., Tihonova N. A. Ob intensivnosti techenij raznyh vremennyh masshtabov v Chukotskom more i Beringovom prolive [Intensity of currents of different time scales in the Chukchi Sea and Bering Strait]// Russian Meteorology and Hydrology. 2006. No. 1. P. 58–66. (In Russian, English translation).
  22. Zhabin I. A., Dmitrieva E. V., Dubina V. А., and Luchin V. А. Izmenchivost' letnego vetrovogo apvellinga u Koryakskogo poberezh'ya v severo-zapadnoj chasti Beringova morya po dannym sputnikovyh nablyudenij [Variability of Wind-Driven Upwelling along Koryak Coast in the North-Western Bering Sea Based on the Satellite Data] // Issled. Zemli iz kosmosa. 2022. No. 5. P. 60‒73. (In Russian).
  23. Zhuk V. R., Kubryakov A. A. Vliyanie Vostochno-Sibirskogo techeniya na vodoobmen v Beringovom prolive po sputnikovym dannym [Impact of the Eastern Siberian Current on Water Exchange in the Bering Strait on the Base of Satellite Altimetry Measurements] // Oceanology. 2021. V. 61. Iss. 6. P. 781‒802. (In Russian, English translation).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the research area (https://earth.google.com /).

Download (375KB)
3. Fig. 2. Spatial distribution of TPM (°C) in the Bering Sea in winter (February), spring (May), summer (August) and autumn (November).

Download (404KB)
4. Fig. 3. Graph of the TPM values averaged over the Beringian Sea area for 1998-2021. The red dots show the trend line calculated by the least squares method.

Download (148KB)
5. Fig. 4. Spatial distribution of the amplitude (°C) and phase (°) of the annual harmonic of the TPM in the waters of the Beringian Sea.

Download (260KB)
6. Fig. 5. Spatial distribution of the linear trend coefficient of TPM (in °C over 10 years) in the water area The Bering Sea in winter, spring, summer and autumn.

Download (383KB)
7. Fig. 6. Graphs of time functions (°C) and spatial distribution (dimensionless value) of the first two modes of decomposition of the TPM according to the EOF.

Download (457KB)
8. Fig. 7. Spatial distribution of TPM anomalies in the Bering Sea.

Download (459KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».