Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.

Full Text

Restricted Access

About the authors

Thi Nam Phuong Doan

Hanoi University of Mining and Geology

Email: trinhlehung@lqdtu.edu.vn

Geomatics in Earth Sciences Research Group

Viet Nam, Hanoi

Le Hung Trinh

Le Quy Don Technical University

Author for correspondence.
Email: trinhlehung@lqdtu.edu.vn
Viet Nam, Hanoi

V. R. Zablotskii

Moscow State University of Geodesy and Cartography

Email: trinhlehung@lqdtu.edu.vn
Russian Federation, Moscow

Van Trung Nguyen

Hanoi University of Mining and Geology

Email: trinhlehung@lqdtu.edu.vn

Geomatics in Earth Sciences Research Group

Viet Nam, Hanoi

Xuan Truong Tran

Hanoi University of Mining and Geology

Email: trinhlehung@lqdtu.edu.vn

Geomatics in Earth Sciences Research Group

Viet Nam, Hanoi

Thi Thanh Hoa Pham

Hanoi University of Mining and Geology

Email: trinhlehung@lqdtu.edu.vn

Geomatics in Earth Sciences Research Group

Viet Nam, Hanoi

Thi Thu Ha Le

Hanoi University of Mining and Geology

Email: trinhlehung@lqdtu.edu.vn

Geomatics in Earth Sciences Research Group

Russian Federation, Hanoi

Van Phu Le

Le Quy Don Technical University

Email: trinhlehung@lqdtu.edu.vn
Viet Nam, Hanoi

References

  1. Bondur V. G., Gordo K. A., Kladov V. L. Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in northern Eurasia according to satellite-monitoring data // Izvestiya, Atmospheric and Oceanic Physics. 2017. Vol. 53. No. 9. P. 859–874. doi: 10.1134/S0001433817090055.
  2. Bondur V. G., Gordo K. A. Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics. 2018. Vol. 54. No. 9. P. 955–965. doi: 10.1134/S0001433818090104.
  3. Bondur V. G. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics. 2016. Vol. 52. No. 9. P. 1078–1091. doi: 10.1134/S0001433816090103.
  4. Bondur V. G., Ginzburg A. S. Emission of Carbon-Bearing Gases and Aerosols from Natural Fires on the Territory of Russia Based on Space Monitoring // Doklady Earth Sciences. 2016. Vol. 466. No. 2. P. 148–152. doi: 10.1134/S1028334X16020045.
  5. Arpaci A., Malowerschnig B., Sass O., Vacik H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests // Applied Geography. 2014. V. 53. P. 258–270.
  6. Beals E. A. Weather forecasts in the problem of protecting forests from fire // Monthly Weather Review. 1914. V. 42. P. 111–119.
  7. Bui T. D., Bui Q. T., Nguyen Q. P., Pradhan B., Nampak H., Phan T. T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area, Agricultural and Forest Meteorology. 2017. V. 233. P. 32–44.
  8. Bui T. D., Le T. K.T., Nguyen V. C., Le H. D., Revhaug I. Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression // Remote Sensing. 2016. V. 8. P. 347. doi: 10.3390/rs8040347.
  9. Chowdhury H., Hassan K. Use of remote sensingderived variables in developing a forest fire danger forecasting system // Natural Hazards. 2013. V. 67. P. 321–334.
  10. Dang N. B.T. Study on the risk and warning of forest fire in Son La province based on the application of geoinformation technology // Geography Doctoral Thesis, Hanoi National University. 2021.
  11. Doan H. P. Developing algorithms for determining land surface temperature in forest fire warning monitoring based on MODIS satellite images (TERRA and AQUA) in the territory of Vietnam // Thesis of Doctor of Engineering. Hanoi University of Mining and Geology. 2007.
  12. Dong X. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China // Journal of Forestry Research. 2005. V. 16(3). P. 169–174.
  13. Fernandez J., Chuvieco E., Koutsias N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression // Natural Hazards Earth System Scieces. 2012. V. 12. P. 1–17.
  14. Enoh M., Okeke U., Narinua N. Identification and modelling of forest fire severity and risk zones in the Cross – Niger transition forest with remotely sensed satellite data // The Egyptian Journal of Remote Sensing and Space Science. 2021. V. 24(3). P. 879–887.
  15. Hererra V., Soon W., Moreno C., Hererra G., Dubois R., Cruz L., Fedorov V., Estrada S., Bongelli E., Zuniga E. Past and future of wildfires in Northern Hemisphere’s boreal forests // Forest Ecology and Management. 2022. V. 504. 119859.
  16. Hoang V. T., Chou T., Fang Y., Nguyen N. T., Nguyen Q. H., Pham X. C., Dang N. B.T., Nguyen X. L., Meadows M. Mapping forest fire risk and development of early warning system for NW Vietnam using AHP and MCA/GIS methods // Applied Sciences. 2020. V. 10(12). 4348.
  17. Jaiswal R., Mukherjee S., Raju K., Saxena R. Forest fire risk zone mapping from satellite imagery and GIS // International Journal of Applied Earth Observation and Geoinformation. 2002. V. 4(1). P. 1–10.
  18. Iban M., Sekertekin A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey // Ecological Informatics. 2022. V. 69. 101647.
  19. Nguyen N. T., Dang N. B.T., Pham X. C., Nguyen T. H., Bui T. H., Hoang D. N., Bui T. D. Spatial pattern asessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study // Ecological Informatics. 2018. V. 46. P. 74–85.
  20. Oliveira S., Oehler F., Ayanz J., Camia A., Pereira J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest // Forest Ecology and Management. 2012. V. 275. P. 117–129.
  21. Pham N. H. Developing a method to predict forest fires Pinus merkusii J. in Quang Ninh province // Thesis of Doctor of Agricultural Science. Hanoi (in Vietnamese). 1988.
  22. Pourghasemi H. GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models // Scandinavian Journal of Forest Research. 2015. P. 40. doi: 10.1080/02827581.2015.1052750.
  23. Rouse, J.W., R. H. Haas, J. A. Schell, and D. W. Deering. Monitoring Vegetation Systems in the Great Plains with ERTS. // Third ERTS Symposium. 1973. NASA SP-351 P. 309–317.
  24. Ruano A., Jolly W., Freeborn P., Nieva D., Vega N., Herrera C., Rodrigues M. Spatial Predictions of Human and Natural-Caused Wildfire Likelihood across Montana (USA) // Forests 2022. V.13(8). 1200.
  25. Sivrikaya F., Kucuk O. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region // Ecological Informatics. 2022. V. 68. 101537.
  26. Tran Q. B., Phung N. T., Le N. H. Research on designing new software for early detection of forest firesfrom MODIS satellite image. // Journal of Agriculture and Rural Development. 2016. V. 21. P. 114–120.
  27. Tran V. H., Vo Q. M., Vo T. G. Geographic information system (GIS) aproach in forest fire warning methodology development for U Minh Ha national park // Science Journal of Can Tho University. 2010. V. 14. P. 97–106.
  28. Trinh L. H., Zablotskii V. R. The application of Landsat multi-temporal thermal infrared data to identify coal fire in the Khanh Hoa coal mine, Thai Nguyen province, Vietnam // Izvestiya. Atmospheric and Oceanic Physics. 2017. V. 53(9). P. 1181–1188.
  29. Trinh L. H. Studies of land surface temperature distribution using multispectral image Landsat // Vietnam Journal of Earth Sciences. 2014. V. 36(1). P. 82–89.
  30. Valor E., Caselles V. Mapping land surface emissivity from NDVI. Application to European African and South American areas // Remote Sensing of Environment. 1996. V. 57. P. 167–184.
  31. Vasilakos C., Kalabokidis K., Hatzopoulos J., Matsinos T. Identifying wildland fire ignition factors through sensitivity analysis of a neural network // Natural Hazards. 2009. V. 50. P. 125–143.
  32. Vo D. T. Methods of forecasting, mapping and zoning the key areas of forest fires in Binh Thuan // Forestry Journal. 1995. V. 10. P. 11–14 (in Vietnamese).
  33. Vuong V. Q. Research and develop solutions to prevent and overcome the consequences of forest fires for the U Minh and Central Highlands regions // Summary report of topic KC08.24. 2005.
  34. Yassemi S., Dragicevic S., Schmidt M. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behavior // Ecological Modelling. 2008. V. 210. P. 71–84.
  35. Williams M. Remote sensing, GIS and wildland fire management: A global perspective // Proceedings of the International Workshop on Satellite Technology and GIS for Mediterranean Forest Mapping and Fire Management. 1983.
  36. Wimberly M., Reilly M. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery // Remote Sensing of Environment. 2007. V. 108(2). P. 189–197.
  37. https://www.worldclim.org/. Accessed April 12. 2023.
  38. https://data.worldpop.org/. Accessed April 12. 2023.
  39. https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook. Accessed March 8. 2023.
  40. https://effis.jrc.ec.europa.eu/apps. Accessed April 15. 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the studied area. At the top right is the administrative map, at the bottom is the Landsat image of the province of Nguean.

Download (697KB)
3. Fig. 2. Images of Landsat 8 and Sentinel 2 of the study area.

Download (343KB)
4. Fig. 3. Flowchart of the forest fire risk mapping methodology using remote sensing and GIS data.

Download (533KB)
5. Fig. 4. Digital relief model SRTM of the studied area.

Download (315KB)
6. Fig. 5. Information layers – input data for forest fire hazard forecasting models: a – terrain; b - slope slope; c – slope exposure; d – surface evapotranspiration; d – vegetation index NDVI; e – surface temperature; g – wind speed; h – average monthly precipitation; and – population density.

Download (859KB)
7. Fig. 6. Fire hazard map of the forest (western part of Nguean province). Black triangles are the location of former fires, blue triangles are hotbeds of fire that did not develop into forest fires due to timely warning.

Download (602KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».