Survival Strategy of the Diatom Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle, 1993 under Long-term Dark Conditions
- Authors: Yakovleva I.M.1, Orlova T.Y.1
-
Affiliations:
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 51, No 6 (2025)
- Pages: 351-364
- Section: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Published: 15.11.2025
- URL: https://ogarev-online.ru/0134-3475/article/view/362232
- DOI: https://doi.org/10.7868/S3034526X25060044
- ID: 362232
Cite item
Abstract
The physiological response of the marine diatom Pseudo-nitzschia pungens to dark exposure for 45 and 90 days and subsequent acclimation under re-illumination was studied. We have shown that the alga remains metabolically active between 0 and 45 days of dark exposure. This stage is characterized by the stabilization of cell culture density, activation of respiratory metabolism and synthetic processes, and a low rate of intracellular carbon (C) and nitrogen (N) consumption. Between 45 and 90 days of dark exposure, P. pungens cells enter a rest state accompanied by the cessation of cell division, suppression of synthetic processes, preservation of the light-harvesting complex, and almost complete suppression of photosynthesis. The viability of cells is provided by maintaining high respiratory activity and elevated level of intracellular C reserves. We have also shown that the step-by-step reorganization of the structure and function of the photosynthetic apparatus in P. pungens under long-term dark conditions contributes to the maintenance of cell’s photosynthetic competence and the subsequent recovery of the density of P. pungens population when re-exposed to light. The duration of the algae population recovery period, as well as the regeneration of the structure of their light-harvesting complex, is determined by the duration of exposure to darkness.
About the authors
I. M. Yakovleva
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Email: torlova06@mail.ru
ORCID iD: 0000-0003-0299-6983
Vladivostok, Russia
T. Yu. Orlova
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: torlova06@mail.ru
ORCID iD: 0000-0002-5246-6967
Vladivostok, Russia
References
- Воскобойников Г.М., Макаров М.В., Рыжик И.В. Изменения в составе фотосинтетических пигментов и структуре клеток у бурых водорослей Fucus vesiculosus и F. serratus L., из Баренцева моря при длительном нахождении в темноте // Биол. моря. 2006. T. 32. C. 26–33.
- Орлова Т.Ю. Красные приливы и токсические микроводоросли в дальневосточных морях России // Вестн. ДВО РАН. 2005. Т. 1. С. 27–31.
- Пропп Л.Н., Кашенко С.Д., Пропп М.В. Определение основных биогенных элементов // Методы химического анализа в гидробиологических исследованиях. Владивосток: ДВНЦ АН СССР. 1979. C. 63–88.
- Стоник И.В., Орлова Т.Ю. Продуценты домоевой кислоты рода Pseudo-nitzschia H. Peragallo, 1900 (Bacillariophyta) из северной части Тихого океана // Биол. моря. 2018. Т. 44. С. 299–306.
- Титлянов Э.А., Титлянова Т.В. Симбиотические взаимоотношения микроводорослей зооксантелл и полипов рифостроящих кораллов в процессе автотрофного и гетеротрофного питания // Биол. моря. 2020. T. 46. C. 291–303.
- Шошина Е.В., Капков В.И., Беленикина О.А. Экологические факторы, регулирующие рост макроводорослей в сообществах арктических морей // Вестн. МГТУ. 2016. T. 19. C. 334–344.
- Alderkamp A.C., Buma A.G.J., van Rijssel M. The carbohydrates of Phaeocystis and their degradation in the microbial food web // Biogeochemistry. 2007. V. 83. P. 99–118.
- Andersen P., Throndsen J. Estimating cell numbers // Manual on harmful marine microalgae / Eds G.M. Hallegraeff, D.M. Anderson, A.D. Cembella. Paris: UNESCO Publishing. 2003. P. 99–129.
- Bai X., Song H., Lavoie M. et al. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum // Sci. Rep. 2016. V. 6. Art. ID 25494. https://doi.org/10.1038/srep25494
- Bates S.S., Hubbard K.A., Lundholm N. et al. Pseudonitzschia, nitzschia, and domoic acid: new research since 2011 // Harmful Algae. 2018. V. 79. P. 3–43
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254.
- Fukai Y., Matsuno K., Fujiwara A. et al. Impact of sea-ice dynamics on the spatial distribution of diatom resting stages in sediments of the Pacific Arctic region // J. Geophys. Res.: Oceans. 2021. V. 126. Art. ID e2021JC017223.
- Handy J., Juchem D., Wang Q. et al. Antarctic benthic diatoms after 10 months of dark exposure: consequences for photosynthesis and cellular integrity // Front. Plant Sci. 2024. V. 15. Art. ID 1326375. https://doi.org/10.3389/fpls.2024.1326375
- Hanelt D. Photosynthesis assessed by chlorophyll fluorescence // Bioassays: Advanced methods and applications / Eds D.-P. Hader, G.S. Erzinger. Amsterdam: Elsevier. 2018. Ch. 9. P. 169–198.
- Hanelt D., Figueroa F.L. Physiological and photomorphogenic effects of light on marine macrophytes // Seaweed biology. Ecological Studies (Analysis and Synthesis) / Eds C. Wiencke, K. Bischof. Berlin; Heidelberg: Springer. 2012. V. 219. P. 3–23.
- Jassby A.D., Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton // Limnol. Oceanogr. 1976. V. 21. P. 540–547.
- Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanzen. 1975. V. 167. P. 191–194.
- Jeffrey S.W., Welschmeyer N.A. Spectrophotometric and fluorometric equations in common use in oceanography // Phytoplankton pigments in oceanography: Guidelines to modern methods. Paris: UNESCO Publishing. 1997. P. 597–615.
- Juchem D.P., Schimani K., Holzinger A. et al. Lipid degradation and photosynthetic traits after prolonged darkness in four Antarctic benthic diatoms, including the newly described species Planothidium wetzelii sp. nov. // Front. Microbiol. 2023. V. 14. Art. ID 1241826. https://doi.org/10.3389/fmicb.2023.1241826
- Karsten U., Schumann R., Holzinger A. Ecophysiology, cell biology and ultrastructure of a benthic diatom isolated in the Arctic // Diatoms: Fundamentals and applications / Eds J. Seckbach, R. Gordon. Hoboken, N.J.; Salem, Mass.: Wiley-Scrivener. 2019. P. 273–287.
- Kennedy F., Martin A., Bowman J.P. et al. Dark metabolism: a molecular insight into how the Antarctic seaice diatom Fragilariopsis cylindrus survives long-term darkness // New Phytol. 2019. V. 223. № 2. P. 675–691. https://doi.org/10.1111/nph.15843
- Kvernvik A.C., Hoppe C.J.M., Lawrenz E. et al. Fast reactivation of photosynthesis in arctic phytoplankton during the polar night // J. Phycol. 2018. V. 54. P. 461–470.
- Lacour T., Morin PI., Sciandra T. et al. Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis // Polar Biol. 2019. V. 42. P. 1787–1799. https://doi.org/10.1007/s00300-019-02507-2
- Lelong A., Hegaret H., Soudant P., Bates S.S. Pseudonitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms // Phycologia. 2012. V. 51. P. 168–216. https://doi.org/10.2216/11-37
- Li H., Scheschonk L., Heinrich S. et al. Transcriptomic responses to darkness and the survival strategy of the kelp Saccharina latissima in the early polar night // Front. Mar. Sci. 2020. V. 7. Art. ID 592033.
- Markager S., Sand-Jensen K. Patterns of night-time respiration in a dense phytoplankton community under a natural light regime // J. Ecol. 1989. V. 77. P. 49–61.
- Martin A., McMinn A., Heath M. et al. The physiological response to increased temperature in over-wintering sea ice algae and phytoplankton in McMurdo Sound, Antarctica and Tromso Sound, Norway // J. Exp. Mar. Biol. Ecol. 2012. V. 428. P. 57–66.
- McMinn A., Martin A. Dark survival in a warming world // Proc. R. Soc. B. 2013. V. 280. Art. ID20122909.
- Morales-Sanchez D., Martinez-Rodriguez O.A., Kynd J., Martinez A. Heterotrophic growth of microalgae: metabolic aspects // World J. Microbiol. Biotechnol. 2014. V. 31. P. 1–9.
- Peters E. Prolonged darkness and diatom mortality: II. Marine temperate species // J. Exp. Mar. Biol. Ecol. 1996. V. 207. P. 43–58.
- Recht L., Topfer N., Batushansky A. et al. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis // J. Biol. Chem. 2014. V. 289. № 44. P. 30387–30403. https://doi.org/10.1074/jbc.M114.555144
- Reeves S., McMinn A., Martin A. The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms // Polar Biol. 2011. V. 34. P. 1019–1032.
- Ribeiro S., Sejr M.K., Limoges A. et al. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies // Ambio. 2017. V. 46. Suppl. 1. P. S106–S118. https://doi.org/10.1007/s13280-016-0894-2
- Schaub I., Wagner H., Graeve M., Karsten U. Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard // Polar Biol. 2017. V. 40 P. 1425–1439. https://doi.org/10.1007/s00300-016-2067-y
- Scheschonk L., Becker S., Hehemann J. et al. Arctic kelp eco-physiology during the polar night in the face of global warming: a crucial role for laminarin // Mar. Ecol.: Prog. Ser. 2019. V. 611. P. 59–74.
- Sciandra T., Forget M., Bruyant F. et al. The possible fates of Fragilariopsis cylindrus (polar diatom) cells exposed to prolonged darkness // J. Phycol. 2022. V. 58. P. 281–296.
- Smayda T.J., Trainer V.L. Dinoflagellate bloom in upwelling systems: seeding, variability, and contrasts with diatom bloom behavior // Prog. Oceanogr. 2010. V. 85. P. 92–107.
- Smith R.E.H., Clement P., Head E.J. Night metabolism of recent photosynthate by sea ice algae in the high Arctic // Mar. Biol. 1990. V. 107. P. 255–261.
- Stenow R., Robertson E.K., Kourtchenko O. et al. Resting cells of Skeletonema marinoi assimilate organic compounds and respire by dissimilatory nitrate reduction to ammonium in dark, anoxic conditions // Environ. Microbiol. 2024. V. 26. Art. ID e16625. https://doi.org/10.1111/1462-2920
- Strickland J.D.H., Parsons T.R. Determination of particulate carbon // A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. Ottawa. 1972. V. 167. P. 207–211.
- Summers N., Fragoso G.M., Johnsen G. Photophysiologically active green, red, and brown macroalgae living in the Arctic Polar Night // Sci. Rep. 2023. V. 13. Art. ID 17971. https://doi.org/10.1038/s41598-023-44026-5
- van de Poll W.H., Maat D.S., Fischer P. et al. Solar radiation and solar radiation driven cycles in warming and freshwater discharge control seasonal and inter-annual phytoplankton chlorophyll a and taxonomic composition in a high Arctic fjord (Kongsfjorden, Spitsbergen) // Limnol. Oceanogr. 2020. V. 66. № 4. P. 1221–1236. https://doi.org/10.1002/lno.11677
- van de Poll W.H., Nassif T.F. The interacting effect of prolonged darkness and temperature on photophysiological characteristics of three Antarctic phytoplankton species // J. Phycol. 2023. V. 59. № 5. P. 1053–1063.
- Veuger B., van Oevelen D. Long-term pigment dynamics and diatom survival in dark sediment // Limnol. Oceanogr. 2011. V. 56. № 3. P. 1065–1074.
- Wang G., Huang L., Zhuang S. et al. Resting cell formation in the marine diatom Thalassiosira pseudonana // New Phytol. 2024. V. 243. P. 1347–1360.
- Wulff A., Roleda M.Y., Zacher K., Wiencke C. Exposure to sudden light burst after prolonged darkness – a case study on benthic diatoms in Antarctica // Diatom Res. 2008. V. 23. P. 519–532.
Supplementary files


