Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 49, № 2 (2023)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Кластерная самоорганизация кристаллообразущих систем: новые трехслойные (K155 = Al@Al6Pd8@Pd12Al30@Pd8Co18Al72) и двухслойные (K55 = Co@Al12@Co12Al30) кластеры-прекурсоры для самосборки кристаллической структуры Pd112Co204Al684-cP1000

Шевченко В.Я., Илюшин Г.Д.

Аннотация

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры Pd112Co204Al684-cP1000 с пр. гр. Pa-3, a = 24.433 Å, V = 14587.24 Å3. Металлокластеры-прекурсоры кристаллических структур определены с использованием алгоритма разложения структурных графов на кластерные структуры и путем построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров-прекурсоров \(S_{3}^{0}.\) Установлены 26 906 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 12. Рассмотрена самосборка кристаллической структуры из новых трехслойных K155(4a) =Al@Al6Pd8)@Pd12Al30@Pd8Co18Al72 и двухслойных кластеров-прекурсоров K55(4b) = Co@Al12@Co12Al30 с симметрией g = –3. В элементарной ячейке позиции 4a занимают атомы Al, являющиеся центральными атомами 15-атомного полиэдра K15(4a) = Al@Al8Pd6 и позиции 4b занимают атомы Co, являющихся центральными атома 13-атомного икосаэдра K13(4b) = Co@Al12. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K155 и K55 в виде: первичная цепь → микрослой → микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K155 и K55, установлены атомы Al.

Физика и химия стекла. 2023;49(2):117-129
pages 117-129 views

Влияние оксидов различных металлов на физико-химические свойства стекол системы PbO–CdO–SiO2–B2O3–Al2O3

Лозинский Н.С., Мороз Я.А., Лопанов А.Н.

Аннотация

Методами рентгенофазового анализа, инфракрасной спектроскопии, электронного парамагнитного резонанса изучены физико-химические процессы, протекающие в стеклах системы PbO–CdO–SiO2–B2O3–Al2O3 после высокотемпературного контакта с оксидами различных металлов: CuO, NiO, Al2O3, TiO2, Nb2O5 и WO3, а также электрическое сопротивление полученных стекол. Установлено, что эти свойства предопределяются кислотно-основными и окислительно-восстановительными свойствами оксидов и стекла, напрямую зависящими от содержания иона О2– в каждой конкретной их композиции.

Физика и химия стекла. 2023;49(2):130-147
pages 130-147 views

Прогноз кристаллизующихся фаз и моделирование химического взаимодействия в системе CaO–MgO–SiO2

Гаркушин И.К., Лаврентьева О.В., Штеренберг А.М.

Аннотация

Построено древо фаз изученной ранее системы СаO–MgO–SiO2, включающее три цикла и представленные пятнадцатью симплексами, разделяющимися между собой пятнадцатью стабильными секущими. В системе отмечено образование шести двойных и четырех тройных соединений конгруэнтного и инконгруэного плавления. На основании древа фаз с учетом данных по элементам огранения проведен прогноз кристаллизующихся фаз в стабильных секущих и в фазовых вторичных треугольниках. Для фигуративных точек состава, отвечающих пересечениям стабильных и нестабильных секущих, на основе термодинамических данных описано химическое взаимодействие. Показано, что тройные соединения могут быть синтезированы по нескольким реакциям.

Физика и химия стекла. 2023;49(2):148-157
pages 148-157 views

Исследование электрофизических свойств твердых растворов со структурой перовскита в системах La2O3–SrO–Ni(Co,Fe)2O3 – δ для катодных электродов топливных элементов

Калинина М.В., Дюскина Д.А., Полякова И.Г., Арсентьев М.Ю., Шилова О.А.

Аннотация

Методом совместной кристаллизации азотнокислых солей с ультразвуковой обработкой синтезированы высокодисперсные мезопористые порошки состава: La1 – xSrxNiO3 – δ, La1 – xSrxCoO3 – δ и La1 – xSrxFe0.7Ni0.3O3 – δ (x = 0.30; 0.40). На их основе получены керамические наноматериалы заданного состава с ОКР ~ 65–69 нм (1300°С). Керамика, обожженная при 1300°С являяется однофазной и обладает тетрагональной и орторомбической структурой типа перовскита в системе La2O3‒SrO‒Ni(Co,Fe)2O3 – δ. Твердые растворы имеют смешанную электронно-ионную проводимость с числами переноса te = 0.98–0.90; ti = 0.02–0.10. Керамика с тетрагональной кристаллической структурой типа перовскита обнаруживает более высокую электропроводность по сравнению с материалами, обладающими орторомбической кристаллической структурой типа перовскита. По своим электрофизическим свойствам, связанным со структурными особенностями твердых растворов, полученные на их основе керамические материалы перспективны в качестве твердооксидных катодов среднетемпературных топливных элементов.

Физика и химия стекла. 2023;49(2):158-170
pages 158-170 views

Изучение сорбции углекислого газа модифицированными силикагелями с 2-гидроксиэтилкарбаматом

Гелдиев Ю.А., Тураев Х.Х., Касимов Ш.А., Рузимурадов О.Н., Шилова О.А.

Аннотация

Основной причиной глобального потепления является неуклонный рост парниковых газов в атмосфере. Наибольшую долю парниковых газов составляет углекислый газ CO2. Поэтому важной фундаментальной и прикладной задачей является разработка высокоэффективных сорбентов CO2. В статье исследуется сорбция CO2 сорбентами, представляющими собой силикагели на основе поликремниевой кислоты, модифицированные гидроксиэтилкарбаматом. Показано, что для модификации сорбентов оптимальной является концентрация растворов гидроксиэтилкарбаматов, равная 30%. Факт модификации подтвержден наличием гидроксильных, карбонильных и аминогрупп в составе сорбентов. Установлено, что наличие аминогрупп способствовало увеличению сорбции углекислого газа силикагелем в несколько раз. Исследована термостойкость полученных сорбентов. Показано, что наибольшие показатели сорбции составляли 8.8% от массы сорбента при 30°С. После 5 циклов процессов сорбции/десорбции максимальная сорбционная емкость сорбентов снижалась на 10%. При высоких давлениях до 3 атм. сорбция увеличивалась. Сорбенты, модифицированные 30% раствором гидроксиэтилкарбаматов, при 3 атм. сорбировали до 9.96 моль СО2/г. Относительно быстрый рост скорости сорбции при высоких давлениях и относительно медленный рост при низких давлениях доказывают, что процесс соответствует сорбции 2-го типа. Такие сорбционные системы перспективны для применения в различных технологических газовых системах, содержащих CO2.

Физика и химия стекла. 2023;49(2):171-180
pages 171-180 views

Физико-химическое обоснование получения пористых стекломатериалов из кремнеземсодержащего сырья

Манакова Н.К., Суворова О.В., Семушин В.В.

Аннотация

Представлены результаты исследований по получению пористых стекломатериалов теплоизоляционного назначения на основе кремнеземсодержащих техногенных отходов и нефелина. Изучено влияние модифицирующих добавок на физико-технические свойства вспененных материалов, определено их оптимальное количество. Показано, что введение в состав шихты смеси мела и гипса позволяет существенно увеличить прочность (в 1.8–2 раза) и снизить водопоглощение пеностекольных материалов.

Физика и химия стекла. 2023;49(2):181-190
pages 181-190 views

Синтез и сорбционные свойства в отношении Cs+ и Sr++ микросферических цеолитных материалов на основе ценосфер летучих энергетических зол

Кутихина Е.А., Мазурова Е.В., Буйко О.В., Верещагина Т.А., Аншиц А.Г.

Аннотация

Изучено влияние условий гидротермального синтеза (температура, длительность, перемешивание), состава и предсинтетической обработки узких фракций ценосфер летучих энергетических зол, выполняющих функцию темплата и источника Si и Al, на получение микросферических цеолитных материалов заданного структурного типа в системе Na2O–H2O–(SiO2–Al2O3)стекло двух мольных составов. Продукты синтеза охарактеризованы методами рентгенофазового анализа, растровой электронной микроскопии, энергодисперсионного анализа и низкотемпературной адсорбции азота, изучены их сорбционные свойства в отношении Cs+ и Sr2+. Выявлены факторы, способствующие преимущественному формированию цеолита NaX структурного типа фожазит. Установлено, что цеолитные продукты на основе ценосфер с содержанием стеклофазы около 95 мас. % демонстрируют наиболее высокие сорбционные параметры, включая максимальную емкость по Cs+ и Sr2+ – до 250 и 180 мг/г, коэффициент распределения – порядка 104 и 106 мл/г, степень извлечения – 99.1 и 99.9% соответственно.

Физика и химия стекла. 2023;49(2):191-203
pages 191-203 views

КРАТКОЕ СООБЩЕНИЕ

Кристаллизация натриевоборосиликатного стекла с добавкой Cr2O3

Конон М.Ю., Полякова И.Г., Саратовский А.С., Данилович Д.П., Анфимова И.Н.

Аннотация

Cтекло состава 6Na2O·22B2O3·70SiO2·2Cr2O3 изучено методами растровой электронной микроскопии, рентгенофазового анализа и дифференциально термического анализа в зависимости от длительности термообработки при температуре 550°С. Установлено, что в процессе термообработки в течение 24–96 ч в исследованном стекле формируется ликвационная структура с взаимопроникающими фазами, а также формируется кристаллическая фаза эсколаита – Cr2O3. При максимальной длительности термообработки – 96 ч в объеме стекла образуется кристобалит, что сопровождается уменьшением температуры стеклования маловязкой фазы. Интенсивность пиков эсколаита при этом уменьшается. Кристаллизация фаз Cr2O3 и SiO2 происходит, по-видимому, за счет вещества маловязкой фазы.

Физика и химия стекла. 2023;49(2):204-208
pages 204-208 views

Термическое поведение (–180 ≤ T ≤ 1000°C) ортосиликата магния гидроксилклиногумита Mg5(SiO4)2(OH,F)2

Бирюков Я.П., Бубнова Р.С., Фирсова В.А.

Аннотация

Гидроксилклиногумит Mg5(SiO4)2(OH,F)2 – распространенный моноклинный ортосиликат группы гумита, являющийся, с одной стороны, прототипом перспективных материалов, с другой – важным источником информации как о переносе, так и наличии воды в мантии Земли, в связи с чем изучение его термического поведения представляет особый интерес. В настоящей работе минерал исследован методами порошковой рентгенографии впервые в широком интервале температур (–180 ≤ T ≤ 1000°C). Установлены температурные границы существования фазы, рассчитаны главные значения тензора термического расширения, а также дана структурная трактовка термического расширения.

Физика и химия стекла. 2023;49(2):209-216
pages 209-216 views

Граница области стеклообразования в тройных системах Tm–As–S и Tm–As–Se

Ильяслы Т.М., Гахраманова Г.Г., Исмаилов З.И.

Аннотация

На основании данных, полученных комплексными методами физико-химического анализа по исследованию различных разрезов тройных систем Tm–As–S(Se) и используя литературные данные, определена граница области стеклообразования системы Tm–As–S и Tm–As–Se. Установлено, что при скорости охлаждения 10°C/мин в системе Tm–As–S область стеклообразования стекла системы составляет 33 aт. % от общей площади треугольника, а при скорости охлаждения 102°C/мин 51 aт. % от общей площади треугольника. В системе Tm–As–Se при указанных режимах охлаждения область стекла составляет 35 и 54 aт. % соответственно.

Физика и химия стекла. 2023;49(2):217-220
pages 217-220 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».