A METHOD FOR PROCESSOR FREQUENCY MANAGEMENT BASED ON DETERMINING THE INTENSITY OF MEMORY ACCESSES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, mobile devices must meet high performance requirements and provide extended battery life, which implies low power consumption. These parameters are directly dependent on the processor frequency: at higher frequencies, the processor can execute more instructions per unit of time but consumes more energy, and vice versa. This paper investigates modern process scheduling methods in the Linux operating system kernel with the aim of enhancing performance and reducing power consumption in mobile devices. The process scheduling method of the Linux OS is modified, specifically focusing on the selection of the CPU core queue for a process and the selection of processor core frequencies. The modification is based on solving a discrete bi-criteria optimization problem. The optimization criteria consider two interrelated characteristics: performance and power consumption. The core idea of the modification lies in analyzing the instructions of executing tasks to identify situations where increasing the processor frequency becomes inefficient due to frequent memory accesses. The problem is addressed with certain constraints: heterogeneous architectures are not considered; hardware multithreading is not taken into account, meaning each logical core is treated as a physical one. Based on the proposed method, software was developed and tested using 10 benchmarks from the Rodinia Benchmark Suite. This suite is used to evaluate the performance of computers across various tasks, such as general-purpose computing, image processing, and signal processing. The results of the study showed that the application of the proposed approach led to an average reduction in power consumption of 13% in mobile devices and an increase in performance of 4% compared to the existing Linux kernel scheduler.

About the authors

E. A Varlamova

Bauman State Technical University (National Research University)

Email: katy1781@inbox.ru
ORCID iD: 0009-0003-9491-1891
Moscow, Russia

T. N Romanova

Bauman State Technical University (National Research University)

Email: rtn@bmstu.ru
ORCID iD: 0009-0001-9189-8100
Moscow, Russia

References

  1. Linux kernel code documentation. Cited September 10, 2023. https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
  2. Wenlei B., Changwan H., Sudheer C., Sriram K., Louis-Noël P., Fabrice R., Ponnuswamy S. Static and Dynamic Frequency Scaling on Multicore CPUs // ACM Transactions on Architecture and Code Optimization. 2009. V. 13. P. 1–26. doi: 10.1145/3011017.
  3. Reddy B.K., Merrett G.V., Al-Hashimi B.M., Singh A.K. Online concurrent workload classification for multi-core energy management // 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). Dresden, Germany. 2018. P. 621–624. doi: 10.23919/DATE.2018.8342084.
  4. Basireddy K.R., Singh A.K., Al-Hashimi B.M., Merrett G.V. AdaMD: Adaptive Mapping and DVFS for Energy-Efficient Heterogeneous Multicores // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020. V. 39. № 10. P. 2206–2217. doi: 10.1109/TCAD.2019.2935065.
  5. Basireddy K.R., Wachter E.W., Al-Hashimi B.M., Merrett G. Workload-Aware Runtime Energy Management for HPC Systems // 2018 International Conference on High Performance Computing & Simulation (HPCS). Orleans, France. 2018. P. 292–299. doi: 10.1109/HPCS.2018.00057.
  6. Bogdanov E., Bozhnyuk A., Sartasov S., Granichin O. On Application of Simultaneous Perturbation Stochastic Approximation for Dynamic VoltageFrequency Scaling in Android OS // 7th International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP’21). 2021. doi: 10.1109/EBCCSP53293.2021.9502396.
  7. Reddy B.K., Singh A.K., Biswas D., Merrett G.V., AlHashimi B.M. Inter-Cluster Thread-to-Core Mapping and DVFS on Heterogeneous Multi-Cores // IEEE Transactions on Multi-Scale Computing Systems. 2018. V. 4. № 3. P. 369–382. doi: 10.1109/TMSCS.2017.2755619.
  8. Quan W., Pimentel A.D., Reddi V.J. A scenario-based run-time task mapping algorithm for MPSoCs // Proceedings of the 50th Annual Design Automation Conference (DAC ’13). New York, NY, USA: ACM, 2013. V. 131. P. 1–6. doi: 10.1145/2463209.2488895.
  9. Van Craeynest K., Jaleel A., Eeckhout L., Narvaez P., Emer J. Scheduling heterogeneous multi-cores through Performance Impact Estimation (PIE) // SIGARCH Computation Architectures News. 2012. V. 40. P. 213–224. doi: 10.1145/2366231.2337184.
  10. Gupta U., Patil C.A., Bhat G., Mishra P., Ogras U. Dy-PO: Dynamic Pareto-optimal configuration selection for heterogeneous MPSoCs // ACM Transactions on Embedded Computing Systems. 2017. doi: 10.1145/3126530.
  11. Shamsa E., Kanduri A., Liljeberg P., Rahmani A.M. Concurrent Application Bias Scheduling for Energy Efficiency of Heterogeneous Multi-Core Platforms // IEEE Transactions on Computers. 2022. V. 71. № 4. P. 743–755. doi: 10.1109/TC.2021.3061558.
  12. Zhu Y., Reddi V.J. High-performance and energyefficient mobile web browsing on big/little systems // IEEE International Symposium on High Performance Computer Architecture (HPCA), Shenzhen, China, 2013. P. 13–24. doi: 10.1109/HPCA.2013.6522303.
  13. Moolchandani D., Kumar A., Martínez J.F., Sarangi S.R. VisSched: An Auction-Based Scheduler for Vision Workloads on Heterogeneous Processors // IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems. 2020. V. 39. № 11. P. 4252–4265. doi: 10.1109/TCAD.2020.3013076.
  14. Singh K., Dey S., McDonald-Maier K., Basireddy K.R., Merrett G.V. Dynamic Energy and Thermal Management of Multi-core Mobile Platforms: A Survey // IEEE Design & Test. 2020. V. 37. № 5. P. 25–33. doi: 10.1109/MDAT.2020.2982629.
  15. Ranjbar B., Nguyen T.D.A., Ejlali A., Kumar A. Power-Aware Runtime Scheduler for MixedCriticality Systems on Multicore Platform // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2021. V. 40. № 10. P. 2009–2023. doi: 10.1109/TCAD.2020.3033374.
  16. Han S., Yun Y., Kim Y.H., Kang S. Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems // IEEE Access. 2020. V. 8. P. 69695–69711. doi: 10.1109/ACCESS.2020.2986214.
  17. Siddesha K., Jayaramaiah G.V. Energy Efficient Greedy Scheduling of Tasks for DVFS Enabled Heterogeneous Multicore Processors // International Conference on Recent Trends in Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 2021. P. 538–542. doi: 10.1109/RTEICT52294.2021.9573873.
  18. Pelogeiko M.A., Sartasov S.Yu., Granichin O.N. O stokhasticheskoi optimizatsii energopotrebleniya protsessora smartfona // Informatika i Avtomatizatsiya. 2023. № 5. P. 1004–1033. https://doi.org/10.15622/ia.22.5.3
  19. Lee J., Nam S., Park S. Energy-Efficient Control of Mobile Processors Based on Long ShortTerm Memory // IEEE Access. 2019. V. 7. P. 80552–80560. doi: 10.1109/ACCESS.2019.2923334.
  20. Song S., Kim J., Chung J.-M. Energy Consumption Minimization Control for Augmented Reality Applications based on Multi-core Smart Devices // IEEE International Conference on Consumer Electronics (ICCE), 2019. doi: 10.1109/ICCE.2019.8661917.
  21. Pricopi M., Muthukaruppan T.S., Venkataramani V., Mitra T., Vishin S. Power-performance modeling on asymmetric multi-cores // International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES), Montreal QC Canada. 2013. P. 1–10. doi: 10.1109/CASES.2013.6662519.
  22. Goraczko M., Liu J., Lymberopoulos D., Matic S., Priyantha B., Feng Zhao. Energy-optimal software partitioning in heterogeneous multiprocessor embedded systems // ACM/IEEE Design Automation Conference (DAC), Anaheim CA USA. 2008. P. 191–196. doi: 10.1145/1391469.1391518.
  23. Liu G., Park J., Marculescu D. Dynamic thread mapping for high-performance, power-efficient heterogeneous many-core systems // IEEE International Conference on Computer Design (ICCD), Asheville NC USA. 2013. P. 54–61. doi: 10.1109/ICCD.2013.6657025.
  24. Mukherjee T., Chantem A. An Integrated Energy Management Framework for Multiple Side-by-Side Applications on Smartphones // IEEE International Conference on Embedded Software and Systems (ICESS), Shanghai China. 2020. P. 1–8. doi: 10.1109/ICESS49830.2020.9301538.
  25. Vaibhav S., Masha S. Joint frequency scaling of processor and DRAM // The Journal of Supercomputing. 2016. V. 72. P. 1–16. doi: 10.1007/s11227-016-1680-4.
  26. Che S. et al. Rodinia: A benchmark suite for heterogeneous computing // IEEE International Symposium on Workload Characterization (IISWC), Austin TX USA. 2009. P. 44–54. doi: 10.1109/IISWC.2009.5306797.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).