BUILDING AND DEVELOPING A DATA PROTECTION SERVICE SYSTEM BASED ON POST-QUANTUM CRYPTOGRAPHY SOLUTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the rapidly evolving field of quantum computing technology, Post-Quantum Cryptography (PQC) plays a pivotal role in developing secure cryptographic systems that are resistant to both quantum and classical computers. This paper focuses on the integration and implementation of PQC algorithms such as Falcon and Dilithium for digital signatures, as well as Crystal-Kyber for key encapsulation mechanisms. Through a server-client model, the study has deployed a post-quantum secure communication service achieving encryption times of less than 2 ms, signing performance up to 50 ms for small files and 11073 ms for large files, and key exchange times as low as 16 ms. These metrics provide deep insights into the resilience and security of the proposed cryptographic solutions in real-world environments.

About the authors

Tat-Thang Nguyen

University of Transport and Communications

Email: quynhln@actvn.edu.vn
Vietnam

Duc-Huy Quach

Center 3, Command 86

Vietnam

Toan-Thanh Dao

University of Transport and Communications

Vietnam

Nhu-Quynh Luc

Academy of Cryptography Techniques

Email: daotoan@utc.edu.vn
Vietnam

References

  1. Bernstein D.J., Lange T. Post-quantum cryptography // Nature. 2017. V. 549. № 7671. P. 188-194. doi: 10.1038/nature23461.
  2. Soni D., Basu K., Nabeel M., Aarai N., Manzano M., Karri R. FALCON // Hardware Architectures for Post-Quantum Digital Signature Schemes. Cham: Springer International Publishing, 2021. P. 31-41. doi: 10.1007/978-3-030-57682-0_3.
  3. Hekkala J., Muurman M., Halunen K., Vallivaara V. Implementing Post-quantum Cryptography for Developers // SN Computer Science. 2023. V. 4. № 4.
  4. Bos J. et al. CRYSTALS-Kyber: A CCA-Secure Module-Lattice-Based KEM // 2018 IEEE European Symposium on Security and Privacy (EuroS&P). Apr. 2018. P. 353-367. doi: 10.1109/EuroSP.2018.00032.
  5. Bai S., Galbraith S.D., Li L., Sheffield D. Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem // Journal of Cryptology. 2019. V. 32. № 1. P. 35-83. doi: 10.1007/s00145-018-9304-1.
  6. Regev O. On lattices, learning with errors, random linear codes, and cryptography // Journal of the ACM (JACM). 2009. V. 56. № 6. P. 1-40. doi: 10.1145/1568318.1568324.
  7. David N., Naya-Plasencia M., Schrottenloher A. Quantum impossible differential attacks: applications to AES and SKINNY // Designs, Codes and Cryptography. 2024. V. 92. № 3. P. 723-751. doi: 10.1007/s10623-023-01280-y.
  8. Luc N.-Q., Nguyen T.-T., Vu C.-H., Quach D.-H., Dao T.-T. Secure Messaging Application Development: Based on Post-Quantum Algorithms CSIDH, Falcon, and AES Symmetric Key Cryptosystem // Programming and Computer Software. 2024. V. 50. № 4. P. 322-333. doi: 10.1134/S0361768824700130.
  9. Prokop M., Wallden P., Joseph D. Grover's oracle for the Shortest Vector Problem and its application in hybrid classical-quantum solvers // arXiv preprint arXiv:2402.13895, February 2024.
  10. Harmalkar M., Jain K., Krishnan P. A Survey of Post Quantum Key Encapsulation Mechanism // Proceedings of the 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). January 2024. P. 141-149. doi: 10.1109/ICMCSI61536/2024/00028.
  11. Rescorla E. The Transport Layer Security (TLS) Protocol Version 1_3 // RFC8446, August 2018. https://doi.org/10/17487/RFC8446
  12. Singh A.P., Singh M. Handshake Comparison Between TLS V1_2 and TLS V1_3 Protocol // Proceedings of the International Conference on Advances in Computing and Data Sciences (ICACDS). Singapore: Springer Singapore, 2022. P. 143-155. doi: 10.1007/978-981-16-8012-0_12.
  13. Oluwatosin H.S. Client-Server Model // IOSR Journal of Computer Engineering. 2014. V. 16. № 1. P. 57-71. DOI: 10/9790/0661-16195771.
  14. Tian Y.-C., Gao J. Building TCP/IP Socket Applications // Berlin: Springer Nature Switzerland AG, 2024. DOI: 10/978-981-99-5648-7_13.
  15. Reddy D.S.P., Pranav Y.S., Kora P., Arvind V. Smart Mirror Using Raspberry Pi 4 // Proceedings of the International Conference on Advances in Computing and Data Sciences (ICACDS). Singapore: Springer Singapore, 2023. P. 25-33. DOI: 10/978-981-19-8497-6_3.
  16. Zych M.D. Quantum Safe Cryptography Based on Hash Functions: A Survey // University of Oslo, Department of Informatics. Oslo: University of Oslo Press, 2018.
  17. Kumar R.K., Yogesh M.H., Prasad K. Raghavendra, Sharankumar S., Sabareesh S. 256-Bit AES Encryption Using SubBytes Blocks Optimisation // Proceedings of the International Conference on Advanced Computing Technologies (ICACT), January 2024. P. 621-628. DOI: 10/978-981-99-7954-7_56.
  18. Lu J., Zhou W. Improved meet-in-the-middle attack on 10 rounds of the AES-256 block cipher // Designs, Codes and Cryptography. 2024. V. 92. № 4. P. 957-973. doi: 10.1007/s10623-023-01323-4.
  19. Guo J., Song L., Wang H. Key Structures: Improved Related-Key Boomerang Attack Against the Full AES-256 // Proceedings of the International Conference on Information Security and Cryptology (ISC). 2022. P. 3-23. doi: 10.1007/978-3-031-22301-3_1.
  20. Baek S., Cho S., Kim J. Quantum cryptanalysis of the full AES-256-based Davies-Meyer, Hirose and MJH hash functions // Quantum Information Processing. 2022. V. 21. № 5. P. 163. doi: 10.1007/s11128-022-03499-5.
  21. Holz R., Amann J., Razaghpanah A., Vallina-Rodriguez N. The Era of TLS1_3: Measuring Deployment and Use with Active and Passive Methods, July 2019. https://doi.org/10.48550/arXiv.1907.12762
  22. Scheife Q. et al. A First Look at Certification Authority Authorization (CAA) // ACM SIGCOMM Computer Communication Review. 2018. V. 48. № 2. P. 10-23. doi: 10.1145/321232.3213235.
  23. Farhan S.M., Chung T. Exploring the Evolution of TLS Certificates // Proceedings of the International Conference on Network Security and Blockchain Technology (NSBT). 2023. P. 71-84. doi: 10.1007/978-3-031-28486-1_4.
  24. Kannwischer K.S., Matthias J., Rijneveld J., Schwabe P. pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M, Second PQC Standardization Conference. Santa Barbara, CA: University of California, 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).