Research on methods for traversing two-level bvh trees on graphics processors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A key part of the most common ray tracing methods is the traversal/search for intersections with a hierarchical structure – BVH, which describes the scene geometry. This paper presents a comparative analysis of the performance of several BVH tree traversal methods on stationary and mobile graphics processors. We investigated BVH trees with varying depths and numbers of child nodes, implemented several stack-based traversal algorithms, and two different stackless traversal algorithms; we proposed our own stackless traversal variant, which is more performant than existing ones in some cases. We proposed our own compression method for BVH trees with 2 nodes, losing no more than 15% performance. We identified a common problem that occurs in almost all algorithms when implemented on graphics processors. We believe that our analysis will help developers of ray tracing hardware accelerators create more economical hardware solutions, not limited solely to ray tracing. More specifically, our experimental results suggest that up to a 5x speedup can be achieved by changing the L2 cache mechanism, and this has likely already been implemented in stationary GPUs with hardware-accelerated ray tracing, not only within the ray tracing mechanism itself but also in a more general context.

About the authors

L. M. Smirnov

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Email: lyovasmirnov@gmail.com
Moscow, 119991 Russia

V. A. Frolov

Institute of Artificial Intelligence; Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: vladimir.frolov@graphics.cs.msu.ru
Leninskie Gory, Moscow, 119899 Russia; Moscow, 119991 Russia; Moscow, 125047 Russia

Y. A. Kryachko

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Email: yuri.kryachko@gmail.com
Moscow, 119991 Russia

A. G. Voloboy

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: voloboy@gin.keldysh.ru
Moscow, 125047 Russia

References

  1. Beets K. The six levels of ray tracing acceleration. Imagination white paper. https://forums.macrumors.com/attachments/imagination-raytracing-primer-sept2020-pdf.1973926/
  2. Meister D., Bittne J. Performance Comparison of Bounding Volume Hierarchies for GPU Ray Tracing, Journal of Computer Graphics Techniques (JCGT). 2022. V. 11. № 4. Р. 1–19. http://jcgt.org/published/0011/04/01/
  3. Meister D., Ogaki S., Benthin C., Michael J., Doyle M.J., Guthe М., Bittner J. A Survey on Bounding Volume Hierarchies for Ray Tracing. Computer Graphics Forum. 2021. V. 40. P. 683–712.
  4. Aila T., Laine S. Understanding the Efficiency of Ray Traversal on GPUs. In Proceedings of HPG. 2009. Р. 145–149. 16, 17, 23.
  5. Aila T., Karras T. Architecture Considerations for Tracing Incoherent Rays. In Proceedings of PG. 2010. Р. 113–122. 18, 19.
  6. Aila T., Karras T., Laine S. On Quality Metrics of Bounding Volume Hierarchies. HPG. 2013. Р. 101–108. 4, 5, 10.
  7. Lier A., Stamminger M., Selgrad K. CPU-style SIMD ray traversal on GPUs. In Proceedings of the Conference on High-Performance Graphics, Association for Computing Machinery, 7:1–7:4. 2018. https://doi.org/10.1145/3231578. 3231583. 7, 8, 11, 15
  8. Ernst M., Greiner G. Early Split Clipping for Bounding Volume Hierarchies. In Proceedings of Symposium on Interactive Ray Tracing. 2007. Р. 73–78. 9, 10.
  9. Stich M., Friedrich H., Dietrich A. Spatial Splits in Bounding Volume Hierarchies. In Proceedings of the High-Performance Graphics. 2009. Р. 7–13. 10, 22, 23.
  10. Segivia B., Ernst M. Memory Efficient Ray Tracing with Hierarchical Mesh Quantization. In Proceedings of Graphics Interface. 2010. Р. 153–160. 12, 13.
  11. Mahovsky J., Wyvill B. Memory-Conserving Bounding Volume Hierarchies with Coherent Raytracing. Computer Graphics Forum 25. 2006. № 2. Р. 173–182. 12.
  12. Liktor G., Vaidyanathan K. Bandwidth-efficient BVH Layout for Incremental Hardware Traversal. In Proceedings of High-Performance Graphics. 2016. Р. 51–61. 8, 18, 19.
  13. Kalojanov J., Billeter M., Slusallek P. Two-level grids for ray tracing on GPUs // Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd. 2011. V. 30. № 2. P. 307–314.
  14. Bartels P., Harada T. Combining GPU Tracing Methods within a Single Ray Query. In SIGGRAPH Asia 2022 Technical Communications (SA '22). Association for Computing Machinery, New York, NY, USA, 2022. Article 17, 1–4. https://doi.org/10.1145/3550340.3564231
  15. Zellmann S., Wu Q., Ma K.L., Wald I. Memory-Efficient GPU Volume Path Tracing of AMR Data Using the Dual Mesh. 2023.
  16. Garanzha K., Bel A., Premoze S., Galaktionov V. (2011). Out-of-core GPU ray tracing of complex scenes. In ACM SIGGRAPH 2011 Talks (pp. 1-1).
  17. Roberto T. et al. Ray casting using a roped BVH with CUDA. Spring conference on Computer graphics. 2009.
  18. Binder N., Keller A. Efficient Stackless Hierarchy Traversal on GPUs with Backtracking in Constant Time. In Proceedings of High-Performance Graphics. 2016. Р. 41–50. 17.
  19. Laine S., Karra T., Aila T. Megakernels Considered Harmful: Wavefront Path Tracing on GPUs. High-Performance Graphics 2013.
  20. Wald I., Woop S., Benthin C., Johnson G.S. & Ernst M. (2014). Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics (TOG). 2014. № 33(4). Р. 1–8.
  21. Wald I., Benthin C., Boulos S. Getting Rid of Packets – Efficient SIMD Single-Ray Traversal using Multi-Branching BVHs. In Symposium on Interactive Ray Tracing. 2008. Р. 49–57. 10, 14, 22, 23.
  22. Popov S., Georgiev I., Dimov R., Slusallek P. Object Partitioning Considered Harmful: Space Subdivision for BVHs. In Proceedings of High-Performance Graphics. 2009. Р. 15–22. 4, 5, 10, 22.
  23. Ylitie H., Karras T., Laine S. Efficient Incoherent Ray Traversal on GPUs Through Compressed Wide BVHs. In Proceedings of High-Performance Graphics. 2017. Р. 4: 1–4: 13, 10, 12, 16, 17, 22, 23
  24. Yoon S.E., Manocha D. Cache-Efficient Layouts of Bounding Volume Hierarchies. Computer Graphics Forum. 2006. 8.
  25. Wachter C., Keller A. Instant Ray Tracing: The Bounding Interval Hierarchy. In Proceedings Eurographics Symposium on Rendering. 2006. Р. 139–149. 13.
  26. Eisemann M., Woizischke C., Magnor M. Ray Tracing with the Single Slab Hierarchy. In Proceedings of Vision, Modeling, and Visualization. 2008. Р. 373–381. 13.
  27. Lin D., Vasiou E., Yuksel C., Kopta D., Brunvand E. Hardware-Accelerated Dual-Split Trees. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 2 (2020). 13.
  28. Weier P., Rath A., Michel É., Georgiev I., Slusallek P., Boubekeur T. N-BVH: Neural ray queries with bounding volume hierarchies. In ACM SIGGRAPH 2024 Conference Papers (SIGGRAPH '24). Association for Computing Machinery, New York, NY, USA, Article 99, 1–11. doi: 10.1145/3641519.3657464.
  29. Frolov V., Sanzharov V., Garifullin A., Raenchuk M., Voloboy A. CrossRT: A cross platform programming technology for hardware-accelerated ray tracing in CG and CV applications // arXiv:2409.12617

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).