ON CALCULATION OF ABELIAN DIFFERENTIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper considers the construction of the fundamental function and Abelian differentials of the third kind on a plane algebraic curve over the field of complex numbers that has no singular points. The algorithm for constructing differentials of the third kind was described in Weierstrass’s lectures. The paper discusses its implementation in the Sage computer algebra system. The specifics of this algorithm, as well as the very concept of the differential of the third kind, implies the use of both rational numbers and algebraic numbers, even when the equation of a curve has integer coefficients. Sage has a built-in tool for computations in algebraic number fields, which allows the Weierstrass algorithm to be implemented almost literally. The simplest example of an elliptic curve shows that it requires too many resources, far beyond the capabilities of an office computer. A symmetrization of the method is proposed and implemented, which makes it possible to solve the problem while saving a significant amount of computational resources.

About the authors

M. D. Malykh

Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

Email: malykh_md@pfur.ru
Moscow, Russia; Dubna, Russia

E. A. Airiyan

Joint Institute for Nuclear Research

Dubna, Russia

Yu. Ying

Kaili University

Kaili, China

References

  1. Moses J. Symbolic Integration: The Stormy Decade // Communications of the ACM. 1971. V. 14. № 8. P. 548–560.
  2. Bronstein M. Symbolic Integration I. Transcendental Functions. Springer, 2005.
  3. Parisse B. Algorithmes de calcul formel, 2011. http://www-fourier.ujf-grenoble.fr.
  4. Baker H.F. Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge university press, 2005. ISBN: 9780521498777.
  5. Davenport J.H. On the Integration of Algebraic Functions. Berlin-Heidelberg: Springer, 1982.
  6. Trager Barry M. On the Integration of Algebraic Functions. PhD thesis, MIT, 1984.
  7. Bronstein M. Symbolic Integration Tutirial. ISSAC’98, Rostock (August 1998) and Differential Algebra Workshop, Rutgers November 2000, 1998.
  8. Malykh M.D., Sevastianov L.A., Ying Yu. On symbolic integration of algebraic functions // Journal of Symbolic Computation. 2021. V. 104. P. 563–579.
  9. . Pokrovskii P.M. On rational functions of elliptic image, Mat. Sb., 1900, vol. 21, pp. 387–430. http://mi.mathnet.ru/msb6708
  10. Weierstrass K. Math. Werke. Berlin: Mayer Muller, 1902. Vol. 4.
  11. Kochina P.Ya. Karl Veiershtrass (1815–1897), Moscow: Nauka, 1985.
  12. van Hoeij M. An algorithm for computing an integral basis in an algebraic function field // J. of Symbolic Computation. 1994. Vol. 18. P. 353–363.
  13. Malykh M., Ying Yu. Package Weierstrass for Sage, 2021. https://malykhmd.neocities.org
  14. The Sage Developers. Symmetric Functions, 2024. https://doc.sagemath.org

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).