COMPUTER ALGEBRA TOOLS FOR GEOMETRIZATION OF MAXWELL'S EUQATIONS

Cover Page

Cite item

Full Text

Abstract

Calculations of optical devices in the geometrized Maxwell’s theory use well-known formalisms of general theory of relativity and differential geometry. In particular, for such calculations it is required to know the analytical form of the geodesic equations, which leads to the need to calculate a large number of monotonous mathematical expressions. One of the purposes of computer algebra is to facilitate the researcher’s work by automating cumbersome symbolic computations. Thus, the use of computer algebra systems seems to be quite an obvious way. Several free implementations of symbolic computations for the apparatus of general relativity are considered. A practical example of symbolic computations for the geometrized Maxwell’s theory is given.

About the authors

A. V. KOROL'KOVA

Peoples’ Friendship University of Russia (RUDN University)

Email: korolkova-av@rudn.ru
Moscow, Russia

M. N. GEVORKYAN

Peoples’ Friendship University of Russia (RUDN University)

Email: gevorkyan-mn@rudn.ru
Moscow, Russia

D. S. KULYABOV

Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

Email: kulyabov-ds@rudn.ru
Moscow, Russia; Dubna, Moscow oblast, Russia

L. A. SEVAST'YANOV

Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

Author for correspondence.
Email: sevastianov-la@rudn.ru
Moscow, Russia; Dubna, Moscow oblast, Russia

References

  1. Тамм И.Е. Электродинамика анизотропной среды в специальной теории относительности // Журнал Русского физико-химического общества. Часть физическая. 1924. Т. 56. № 2–3. С. 248–262.
  2. Тамм И.Е. Кристаллооптика теории относительности в связи с геометрией биквадратичной формы // Журнал Русского физикохимического общества. Часть физическая. 1925. Т. 57. № 3–4. С. 209–240.
  3. Mandelstam L.I., Tamm I.Y. Elektrodynamik der anisotropen medien in der speziellen relativittstheorie // Mathematische Annalen. 1925. Bd. 95. H. 1. S. 154–160.
  4. Gordon W. Zur Lichtfortpflanzung nach der Relativita‥tstheorie // Annalen der Physik. 1923. Bd. 72. S. 421–456.
  5. Plebanski J. Electromagnetic waves in gravitational fields // Physical Review. 1960. V. 118. № 5. P. 1396–1408.
  6. Felice F. On the Gravitational Field Acting as an Optical Medium // General Relativity and Gravitation. 1971. V. 2. № 4. P. 347–357.
  7. Smolyaninov I.I. Metamaterial ‘Multiverse’ // Journal of Optics. 2011. V. 13. № 2. P. 024004.
  8. Pendry J.B., Schurig D., Smith D.R. Controlling Electromagnetic Fields // Science. 2006. V. 312. № 5781. P. 1780–1782.
  9. Schurig D., Pendry J.B., Smith D.R. Calculation of Material Properties and Ray Tracing in Transformation Media // Optics express. 2006. V. 14. № 21. P. 9794–9804.
  10. Leonhardt U. Optical Conformal Mapping // Science. 2006. V. 312. № June. P. 1777–1780.
  11. Leonhardt U., Philbin T.G. Transformation Optics and the Geometry of Light // Progress in Optics. 2009. V. 53. P. 69–152.
  12. Foster R., Grant P., Hao Y. et al. Spatial Transformations: from Tundamentals to Applications // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. 8. V. 373. № 2049. P. 20140365.
  13. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. A naive geometrization of maxwell’s equations // The 15th small triangle meeting of Theoretical Physics. Star Lesn, 2013. P. 104–111.
  14. Кулябов Д.С., Королькова А.В., Севастьянов Л.А. Простейшая геометризация уравнений Максвелла // Вестник РУДН. Серия. Математика. Информатика. Физика. 2014. № 2. С. 115–125.
  15. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. et al. Algorithm for lens calculations in the geometrized maxwell theory // Saratov Fall Meeting 2017. V. 10717 of Proceedings of SPIE. Saratov : SPIE, 2018. 4. P. 107170Y.1–6.
  16. Королькова А.В., Кулябов Д.С., Севастьянов Л.А. Тензорные расчеты в системах компьютерной алгебры // Программирование. 2013. № 3. С. 47–57.
  17. Кулябов Д.С., Королькова А.В., Севастьянов Л.А. Новые возможности второй версии пакета компьютерной алгебры cadabra // Программирование. 2019. № 2. С. 41–48.
  18. Sandon D. Symbolic Computation with Python and SymPy. Independently published, 2021. ISBN: 979-8489815208.
  19. Диваков Д.В., Тютюнник А.А. Символьное исследование спектральных характеристик направляемых мод плавно-нерегулярных волноводов // Программирование. 2022. № 2. С. 23–32.
  20. Sympy. 2022. URL: http://www.sympy.org/ru/index.html.
  21. Project jupyter. 2022. URL: https://jupyter.org/.
  22. Einsteinpy–making einstein possible in python. 2022. URL:https://einsteinpy-einsteinpy.readthedocs.io/en /latest/index.html.
  23. Gravipy tensor calculus package for general relativity based on sympy. 2022. URL: https://github.com/wojciechczaja/GraviPy.
  24. Bruns H. Das Eikonal. Leipzig: S. Hirzel, 1895. Bd. 35.
  25. Borovskikh A.V. The two-dimensional eikonal equation // Siberian Math. J. 2006. V. 47. P. 813–834.
  26. Moskalensky E.D. Finding exact solutions to the two-dimensional eikonal equation // Num. Anal. Appl. 2009. V. 2. P. 201–209.
  27. Kabanikhin S.I., Krivorotko O.I. Numerical solution eikonal equation // Sib. Elektron. Mat. Izv. 2013. V. 10. P. 28–34.
  28. Kulyabov D.S., Korolkova A.V., Velieva T.R., Gevorkyan M.N. Numerical analysis of eikonal equation // Saratov Fall Meeting 2018. Vol. 11066 of Proceedings of SPIE. Saratov: SPIE, 2019. 6. P. 56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.В. Королькова, М.Н. Геворкян, Д.С. Кулябов, Л.А. Севастьянов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».